Motivated by recent progress in data assimilation, we develop an algorithm to dynamically learn the parameters of a chaotic system from partial observations. Under reasonable assumptions, we supply a rigorous analytical proof that guarantees the convergence of this algorithm to the true parameter values when the system in question is the classic three-dimensional Lorenz system. Such a result appears to be the first of its kind for dynamical parameter estimation of nonlinear systems. Computationally, we demonstrate the efficacy of this algorithm on the Lorenz system by recovering any proper subset of the three non-dimensional parameters of the system, so long as a corresponding subset of the state is observable. We moreover probe the limitations of the algorithm by identifying dynamical regimes under which certain parameters cannot be effectively inferred having only observed certain state variables. In such cases, modifications to the algorithm are proposed that ultimately result in recovery of the parameter. Lastly, computational evidence is provided that supports the efficacy of the algorithm well beyond the hypotheses specified by the theorem, including in the presence of noisy observations, stochastic forcing, and the case where the observations are discrete and sparse in time.
Citation: |
Figure 4. Two parameters are recovered simultaneously. When applicable, the third parameter is fixed at $ \sigma = 10, \; \rho = 300, \; \beta = 8/3 $. The initial parameter estimate is always set to 10 above the true value. The two relaxation parameters, which correspond to the two unknown parameters, are set to $ 10,000 $, and the relaxation period is $ T_R = 5 $. Each simulation is run out to $ t = 50 $ time units
Figure 6. Parameter recovery with observations every 500 time-steps and either (A) stochastic forcing (of amplitude $ \epsilon $) or (B) noisy observations (of amplitude $ \eta $). The case where neither is present is included for comparison (C). $ \sigma = 10 $, $ \widetilde{\sigma} = 0.8\sigma $, $ \rho = 28 $, $ \widetilde{\rho} = 0.8\rho $, $ \beta = 8/3 $, $ \widetilde{\beta} = 0.8\beta $, $ \Delta t = 0.0001 $, $ \mu^{\rm{AOT}} = 1.8/\Delta t $, $ \mu^{\rm{param}} = 1.8 $
Figure 7. Parameter recovery with observations every 500 time-steps and both stochastic forcing (of amplitude $ \epsilon $) or noisy observations (of amplitude $ \eta $). The initial estimates and algorithm parameters are the same as in Figure 6
Figure 1. The parameter learning algorithm is applied to the true parameters $ \sigma = 10, \, \rho = 28, \, \beta = 8/3 $ with $ \rho, \beta $ known and $ \sigma $ recovered from continuous observations in $ x(t) $. The initial guess is $ \sigma_0 = \sigma+100 $ and the algorithm parameters were set to $ \mu_1 = 500 $, $ T_R = 1 $. The analytically derived upper bounds on position and velocity error from Corollary 4.2 and Corollary 4.4 are shown to hold remarkably well
Figure 3. (Left) The parameter learning algorithm is used to recover $ \sigma $ from 1,000 randomly sampled pairs $ (\rho, \sigma) \in [0,150]^2 $, with $ \beta = 8/3 $ fixed. The initial estimate used is $ \sigma_0 = \sigma+10 $, and the algorithm parameters are fixed at $ \mu_1 = 10,000 $ and $ T_R = 5 $. Each simulation is run to $ t = 75 $ time units. The color corresponds to the resulting absolute parameter error $ | {\widetilde{{{\sigma}}}}-\sigma| $: red signifies $ | {\widetilde{{{\sigma}}}}-\sigma|>|\sigma_0-\sigma| $; white signifies $ | {\widetilde{{{\sigma}}}}-\sigma| = |\sigma_0-\sigma| $; blue signifies $ | {\widetilde{{{\sigma}}}}-\sigma|<|\sigma_0-\sigma| $. The period of each solution is computed using the Poincaré surface of section method described in [31]. (Right) For each $ (\rho, \sigma) $ where $ P_\pm $ are stable, instead of observing $ x $ we observe the translated variable $ z_\tau = z-\sigma-\rho $ and use the alternate formula (3.2) to recover $ \sigma $
Figure 5. (Log-linear plots) Parameter recovery with observations every 500 time-steps. $ \sigma = 10 $, $ \rho = 28 $, $ \beta = 8/3 $, , $ \Delta t = 0.0001 $, $ \mu^{\rm{AOT}} = 1.8/\Delta t = 1,800 $, $ \mu^{\rm{param}} = 1.8 $. (A) Observations only on $ x $, (B) Observations only on $ y $, (C) Observations only on $ y $ and $ z $, (D) Observations only on $ x $ and $ z $, (E) Observations only on $ x $ and $ y $, (F) Observations on $ x $, $ y $, and $ z $. Note: observations only on $ z $ with an unknown $ \beta $ parameter did not converge and hence are not shown. In (A), the solution and the $ \sigma $ parameter momentarily converged to the exact value for roughly $ 97.4\lesssim t\lesssim109.7 $; hence the gap in the plot
[1] |
S. Agarwal and J. Wettlaufer, Maximal stochastic transport in the Lorenz equations, Phys. Lett. A, 380 (2016), 142-146.
doi: 10.1016/j.physleta.2015.09.046.![]() ![]() ![]() |
[2] |
D. A. F. Albanez, H. J. Nussenzveig Lopes and E. S. Titi, Continuous data assimilation for the three-dimensional Navier–Stokes-$\alpha$ model, Asymptotic Anal., 97 (2016), 139-164.
doi: 10.3233/ASY-151351.![]() ![]() ![]() |
[3] |
M. U. Altaf, E. S. Titi, O. M. Knio, L. Zhao, M. F. McCabe and I. Hoteit, Downscaling the 2D Benard convection equations using continuous data assimilation, Comput. Geosci, 21 (2017), 393-410.
doi: 10.1007/s10596-017-9619-2.![]() ![]() ![]() |
[4] |
I. Ayed, E. de Bézenac, A. Pajot, J. Brajard and P. Gallinari, Learning dynamical systems from partial observations, (2019), arXiv: 1902.6136.
![]() |
[5] |
A. Azouani, E. Olson and E. Titi, Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., 24 (2014), 277-304.
doi: 10.1007/s00332-013-9189-y.![]() ![]() ![]() |
[6] |
R. Barrio and S. Serrano, A three-parametric study of the Lorenz model, Physica D, 229 (2007), 43-51.
doi: 10.1016/j.physd.2007.03.013.![]() ![]() ![]() |
[7] |
J. Baumeister, W. Scondo, M. Demetriou and I. Rosen, On-line parameter estimation for infinite-dimensional dynamical systems, SIAM J. Control Optim., 35 (1997), 678-713.
doi: 10.1137/S0363012994270928.![]() ![]() ![]() |
[8] |
H. Bessaih, E. Olson and E. Titi, Continuous data assimilation with stochastically noisy data, Nonlinearity, 28 (2015), 729-753.
doi: 10.1088/0951-7715/28/3/729.![]() ![]() ![]() |
[9] |
A. Biswas, Z. Bradshaw and M. S. Jolly, Data assimilation for the Navier-Stokes equations using local observables, SIAM J. Appl. Dyn. Syst., 20 (2021), 2174–2203, arXiv: 2008.06949.
doi: 10.1137/20M136058X.![]() ![]() ![]() |
[10] |
A. Biswas, C. Foias, C. Mondaini and E. Titi, Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 295-326.
doi: 10.1016/j.anihpc.2018.05.004.![]() ![]() ![]() |
[11] |
A. Biswas, J. Hudson, A. Larios and Y. Pei, Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields, Asymptotic Anal., 108 (2018), 1-43.
![]() ![]() |
[12] |
A. Biswas and V. R. Martinez, Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations, Nonlinear Anal. Real World Appl., 35 (2017), 132-157.
doi: 10.1016/j.nonrwa.2016.10.005.![]() ![]() ![]() |
[13] |
A. Biswas and R. Price, Continuous data assimilation for the three dimensional Navier-Stokes equations, SIAM J. Math. Anal., 53 (2021), 6697–6723, arXiv: 2003.01329.
doi: 10.1137/20M1323229.![]() ![]() ![]() |
[14] |
J. Blocher, V. Martinez and E. Olson, Data assimilation using noisy time-averaged measurements, Physica D, 376/377 (2018), 49-59.
doi: 10.1016/j.physd.2017.12.004.![]() ![]() ![]() |
[15] |
D. Blömker, K. Law, A. M. Stuart and K. C. Zygalakis, Accuracy and stability of the continuous-time 3DVAR filter for the Navier-Stokes equation, Nonlinearity, 26 (2013), 2193-2219.
doi: 10.1088/0951-7715/26/8/2193.![]() ![]() ![]() |
[16] |
E. Carlson, J. Hudson and A. Larios., Parameter recovery for the 2 dimensional Navier-Stokes equations via continuous data assimilation, SIAM J. Sci. Comput., 42 (2020), A250–A270.
doi: 10.1137/19M1248583.![]() ![]() ![]() |
[17] |
E. Carlson and A. Larios, Sensitivity analysis for the 2D Navier-Stokes equations with applications to continuous data assimilation, J. Nonlinear Sci., 31 (2021), Paper No. 84, 30 pp.
doi: 10.1007/s00332-021-09739-9.![]() ![]() ![]() |
[18] |
E. Carlson, L. Van Roekel, M. Petersen, H. Godinez and A. Larios, CDA algorithm implemented in MPAS-O to improve eddy effects in a mesoscale simulation, submitted, (2021), https://doi.org/10.1002/essoar.10507378.1.
![]() |
[19] |
E. Celik, E. Olson and E. S. Titi, Spectral filtering of interpolant observables for a discrete-in-time downscaling data assimilation algorithm, SIAM J. Appl. Dyn. Syst., 18 (2019), 1118-1142.
doi: 10.1137/18M1218480.![]() ![]() ![]() |
[20] |
N. Chen, Y. Li and E. Lunasin, An efficient continuous data assimilation algorithm for the sabra shell model of turbulence, (2021), arXiv: 2105.10020.
![]() |
[21] |
I. Cialenco and N. Glatt-Holtz, Parameter estimation for the stochastically perturbed navier-stokes equations, Stochastic Processes Appl., 121 (2011), 701-724.
doi: 10.1016/j.spa.2010.12.007.![]() ![]() ![]() |
[22] |
P. Clark Di Leoni, A. Mazzino and L. Biferale, Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging, Phys. Rev. Fluids, 3 (2018), 104604.
![]() |
[23] |
P. Clark Di Leoni, A. Mazzino and L. Biferale, Synchronization to big data: Nudging the Navier–Stokes equations for data assimilation of turbulent flows, Phys. Rev. X, 10 (2020), 011023.
![]() |
[24] |
M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, Handbook of uncertainty quantification, Springer, Cham, 1, 2, 3 (2017), 311-428.
![]() ![]() |
[25] |
S. Desamsetti, H. Dasari, S. Langodan, O. Knio, I. Hoteit and E. S. Titi, Efficient dynamical downscaling of general circulation models using continuous data assimilation, Quart. J. Royal Met. Soc., 145 (2019), 3175-3194.
doi: 10.1002/qj.3612.![]() ![]() |
[26] |
A. E. Diegel and L. G. Rebholz, Continuous data assimilation and long-time accuracy in a $C^0$ interior penalty method for the Cahn-Hilliard equation, Appl. Math. Comput., 424 (2022), 127042, arXiv: 2106.14744.
doi: 10.1016/j.amc.2022.77042.![]() ![]() ![]() |
[27] |
F. Ding, J. Pan, A. Alsaedi and T. Hayat, Gradient-based iterative parameter estimation algorithms for dynamical systems from observation data, Mathematics, 7 (2019), 428.
doi: 10.3390/math7050428.![]() ![]() |
[28] |
C. R. Doering and J. D. Gibbon, On the shape and dimension of the Lorenz attractor, Dyn. Stab. Syst., 10 (1995), 255-268.
doi: 10.1080/02681119508806207.![]() ![]() ![]() |
[29] |
C. R. Doering and J. D. Gibbon, Applied Analysis of the Navier–Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511608803.![]() ![]() ![]() |
[30] |
Y. J. Du and M.-C. Shiue, Analysis and computation of continuous data assimilation algorithms for Lorenz 63 system based on nonlinear nudging techniques, J. Comput. Appl. Math., 386 (2021), 113246, 17 pp.
doi: 10.1016/j.cam.2020.113246.![]() ![]() ![]() |
[31] |
H. R. Dullin, S. Schmidt, P. H. Richter and S. K. Grossman, Extended phase diagram of the Lorenz model, Int. J. Bifurcation Chaos, 17 (2007), 3013-3033.
doi: 10.1142/S021812740701883X.![]() ![]() ![]() |
[32] |
G. Evensen, The ensemble Kalman filter for combined state and parameter estimation, IEEE Control Syst., 29 (2009), 83-104.
doi: 10.1109/MCS.2009.932223.![]() ![]() ![]() |
[33] |
A. Farhat, N. E. Glatt-Holtz, V. R. Martinez, S. A. McQuarrie and J. P. Whitehead, Data assimilation in large Prandtl Rayleigh–Benard convection from thermal measurements, SIAM J. Appl. Dyn. Sys., 19 (2020), 510-540.
doi: 10.1137/19M1248327.![]() ![]() ![]() |
[34] |
A. Farhat, M. S. Jolly and E. S. Titi, Continuous data assimilation for the 2D Bénard convection through velocity measurements alone, Physica D, 303 (2015), 59-66.
doi: 10.1016/j.physd.2015.03.011.![]() ![]() ![]() |
[35] |
A. Farhat, E. Lunasin and E. Titi, On the Charney conjecture of data assimilation employing temperature measurements alone: The paradigm of 3D planetary geostrophic model, Math. Clim. Weather Forecast., 2 (2016), 61-74.
doi: 10.1515/mcwf-2016-0004.![]() ![]() |
[36] |
A. Farhat, E. Lunasin and E. S. Titi, Abridged continuous data assimilation for the 2D Navier–Stokes equations utilizing measurements of only one component of the velocity field, J. Math. Fluid Mech., 18 (2016), 1-23.
doi: 10.1007/s00021-015-0225-6.![]() ![]() ![]() |
[37] |
A. Farhat, E. Lunasin and E. S. Titi, Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements, J. Math. Anal. Appl., 438 (2016), 492-506.
doi: 10.1016/j.jmaa.2016.01.072.![]() ![]() ![]() |
[38] |
A. Farhat, E. Lunasin and E. S. Titi, Continuous data assimilation for a 2D Bénard convection system through horizontal velocity measurements alone, Nonlinear Sci., 27 (2017), 1065-1087.
doi: 10.1007/s00332-017-9360-y.![]() ![]() ![]() |
[39] |
C. Foias, M. Jolly, I. Kukavica and E. Titi, The Lorenz equation as a metaphor for the Navier–Stokes equations, Discrete Contin. Dyn. Syst., 7 (2001), 403-429.
doi: 10.3934/dcds.2001.7.403.![]() ![]() ![]() |
[40] |
C. Foias, C. F. Mondaini and E. S. Titi, A discrete data assimilation scheme for the solutions of the two-dimensional Navier–Stokes equations and their statistics, SIAM J. Appl. Dyn. Syst., 15 (2016), 2109-2142.
doi: 10.1137/16M1076526.![]() ![]() ![]() |
[41] |
D. Foster, T. Sarkar and A. Rakhlin, Learning nonlinear dynamical systems from a single trajectory, Learning for Dynamics and Control, PMLR, (2020), 851–861.
![]() |
[42] |
T. Franz, A. Larios and C. Victor, The bleeps, the sweeps, and the creeps: Convergence rates for observer patterns via data assimilation for the 2D Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 392 (2022), 114673.
doi: 10.1016/j.cma.2022.64673.![]() ![]() ![]() |
[43] |
B. García-Archilla and J. Novo, Error analysis of fully discrete mixed finite element data assimilation schemes for the Navier-Stokes equations, Adv. Comput. Math., 46 (2020), Paper No. 61, 33 pp.
doi: 10.1007/s10444-020-09806-x.![]() ![]() ![]() |
[44] |
B. García-Archilla, J. Novo and E. S. Titi, Uniform in time error estimates for a finite element method applied to a downscaling data assimilation algorithm for the Navier-Stokes equations, SIAM J. Numer. Anal., 58 (2020), 410-429.
doi: 10.1137/19M1246845.![]() ![]() ![]() |
[45] |
M. Gardner, A. Larios, L. G. Rebholz, D. Vargun and C. Zerfas, Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations, Electron Res. Arch., 29 (2021), 2223-2247.
doi: 10.3934/era.2020113.![]() ![]() ![]() |
[46] |
M. Gesho, E. Olson and E. S. Titi, A computational study of a data assimilation algorithm for the two-dimensional Navier–Stokes equations, Commun. Comput. Phys., 19 (2016), 1094-1110.
doi: 10.4208/cicp.060515.161115a.![]() ![]() ![]() |
[47] |
K. Hayden, E. Olson and E. Titi, Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations, Physica D: Nonlinear Phenom., 240 (2011), 1416-1425.
doi: 10.1016/j.physd.2011.04.021.![]() ![]() ![]() |
[48] |
J. E. Hoke and R. A. Anthes, The initialization of numerical models by a dynamic-initialization technique, Mon. Weather Rev., 104 (1976), 1551-1556.
doi: 10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2.![]() ![]() |
[49] |
H. Ibdah, C. Mondaini and E. Titi, Fully discrete numerical schemes of a data assimilation algorithm: Uniform-in-time error estimates, IMA J. Numer. Anal., 40 (2020), 2584-2625.
doi: 10.1093/imanum/drz043.![]() ![]() ![]() |
[50] |
M. S. Jolly, V. R. Martinez, E. J. Olson and E. S. Titi, Continuous data assimilation with blurred-in-time measurements of the surface quasi-geostrophic equation, Chin. Ann. Math. Ser. B, 40 (2019), 721-764.
doi: 10.1007/s11401-019-0158-0.![]() ![]() ![]() |
[51] |
M. S. Jolly, V. R. Martinez and E. S. Titi, A data assimilation algorithm for the subcritical surface quasi-geostrophic equation, Adv. Nonlinear Stud., 17 (2017), 167-192.
doi: 10.1515/ans-2016-6019.![]() ![]() ![]() |
[52] |
J. N. Kutz, Deep learning in fluid dynamics, J. Fluid Mech., 814 (2017), 1-4.
doi: 10.1017/jfm.2016.803.![]() ![]() |
[53] |
A. Larios and Y. Pei, Nonlinear continuous data assimilation, (2017), arXiv: 1703.03546.
![]() |
[54] |
A. Larios and Y. Pei, Approximate continuous data assimilation of the 2D Navier–Stokes equations via the Voigt-regularization with observable data, Evol. Equ. Control Theory, 9 (2020), 733-751.
doi: 10.3934/eect.2020031.![]() ![]() ![]() |
[55] |
A. Larios, L. G. Rebholz and C. Zerfas, Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 345 (2019), 1077-1093.
doi: 10.1016/j.cma.2018.09.004.![]() ![]() ![]() |
[56] |
A. Larios and C. Victor, Continuous data assimilation with a moving cluster of data points for a reaction diffusion equation: A computational study, Commun. Comp. Phys., 29 (2021), 1273-1298.
doi: 10.4208/cicp.OA-2018-0315.![]() ![]() ![]() |
[57] |
A. Larios and C. Victor, Improving convergence rates of continuous data assimilation for 2D Navier-Stokes using observations that are sparse in space and time, in preparation, (2021).
![]() |
[58] |
K. Law, A. Shukla and A. Stuart, Analysis of the 3DVAR filter for the partially observed Lorenz'63 model, Discrete Contin. Dyn. Syst., 34 (2014), 1061-1078.
doi: 10.3934/dcds.2014.34.1061.![]() ![]() ![]() |
[59] |
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.![]() ![]() ![]() |
[60] |
E. Lunasin and E. S. Titi, Finite determining parameters feedback control for distributed nonlinear dissipative systems–a computational study, Evol. Equ. Control Theory, 6 (2017), 535-557.
doi: 10.3934/eect.2017027.![]() ![]() ![]() |
[61] |
C. Ma, J. Wang and W. E, Model reduction with memory and the machine learning of dynamical systems, Commun. Comput. Phys., 25 (2019), 947-962.
doi: 10.4208/cicp.oa-2018-0269.![]() ![]() ![]() |
[62] |
P. A. Markowich, E. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.
doi: 10.1088/0951-7715/29/4/1292.![]() ![]() ![]() |
[63] |
C. F. Mondaini and E. S. Titi, Uniform-in-time error estimates for the postprocessing Galerkin method applied to a data assimilation algorithm, SIAM J. Numer. Anal., 56 (2018), 78-110.
doi: 10.1137/16M110962X.![]() ![]() ![]() |
[64] |
E. Ng, Dynamic Parameter Estimation from Partial Observations of the Lorenz Equations, Master's thesis, Hunter College, 2021.
![]() |
[65] |
V. T. Nguyen, D. Georges and G. Besançon, State and parameter estimation in 1-D hyperbolic PDEs based on an adjoint method, Automatica J. IFAC, 67 (2016), 185-191.
doi: 10.1016/j.automatica.2016.01.031.![]() ![]() ![]() |
[66] |
E. Olson and E. Titi, Determining modes and Grashof number in 2D turbulence: A numerical case study, Theor. Comput. Fluid Dyn., 22 (2008), 327-339.
doi: 10.1007/s00162-008-0086-1.![]() ![]() |
[67] |
B. Pachev, J. P. Whitehead and S. McQuarrie, Concurrent Multi-Parameter Learning Demonstrated on the Kuramoto-Sivashinsky Equation, 2021.
![]() |
[68] |
Y. Pei, Continuous data assimilation for the 3D primitive equations of the ocean, Commun. Pure Appl. Anal., 18 (2019), 643-661.
doi: 10.3934/cpaa.2019032.![]() ![]() ![]() |
[69] |
E. Qian, B. Kramer, B. Peherstorfer and K. Willcox, Lift & learn: Physics-informed machine learning for large-scale nonlinear dynamical systems, Physica D, 406 (2020), 132401, 10 pp.
doi: 10.1016/j.physd.2020.132401.![]() ![]() ![]() |
[70] |
K. Radhakrishnan and A. Hindmarsh, Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations, Technical report, Lawrence Livermore National Laboratory, 1993.
![]() |
[71] |
A. Raue, B. Steiert, M. Schelker, C. Kreutz, T. Maiwald, H. Hass, J. Vanlier, C. Tönsing, L. Adlung and R. Engesser, et al., Data2Dynamics: A modeling environment tailored to parameter estimation in dynamical systems, Bioinformatics, 31 (2015), 3558-3560.
doi: 10.1093/bioinformatics/btv405.![]() ![]() |
[72] |
L. G. Rebholz and C. Zerfas, Simple and efficient continuous data assimilation of evolution equations via algebraic nudging, Numer. Methods Partial Differ. Equations, 37 (2021), 2588-2612.
doi: 10.1002/num.22751.![]() ![]() ![]() |
[73] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() ![]() |
[74] |
L. Ruthotto, E. Treister and E. Haber, jInv–a flexible julia package for PDE parameter estimation, SIAM J. Sci. Comput., 39 (2017), S702–S722.
doi: 10.1137/16M1081063.![]() ![]() ![]() |
[75] |
A. N. Souza and C. R. Doering, Maximal transport in the Lorenz equations, Phys. Lett. A, 379 (2015), 518-523.
doi: 10.1016/j.physleta.2014.10.050.![]() ![]() ![]() |
[76] |
S. Trehan, K. T. Carlberg and L. J. Durlofsky, Error modeling for surrogates of dynamical systems using machine learning, Internat. J. Numer. Methods Eng., 112 (2017), 1801-1827.
doi: 10.1002/nme.5583.![]() ![]() ![]() |
[77] |
R. Van Der Merwe and E. A. Wan, The square-root unscented Kalman filter for state and parameter-estimation, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), 6 (2001), 3461-3464.
![]() |
[78] |
C. Wingard, Removing Bias and Periodic Noise in Measurements of the Lorenz System, Thesis, University of Nevada, Department of Mathematics and Statistics, 2009.
![]() |
[79] |
L. Xu, Application of the Newton iteration algorithm to the parameter estimation for dynamical systems, J. Comput. Appl. Math., 288 (2015), 33-43.
doi: 10.1016/j.cam.2015.03.057.![]() ![]() ![]() |
[80] |
X. Xun, J. Cao, B. Mallick, A. Maity and R. Carroll, Parameter estimation of partial differential equation models, Journal of the American Statistical Association, 108 (2013), 1009-1020.
doi: 10.1080/01621459.2013.794730.![]() ![]() ![]() |
[81] |
C. Zerfas, L. Rebholz, M. Schneier and T. Iliescu, Continuous data assimilation reduced order models of fluid flow, Comput. Methods Appl. Mech. Engrg., 357 (2019), 112596, 18 pp.
doi: 10.1016/j.cma.2019.112596.![]() ![]() ![]() |
[82] |
J. Zhu, Z. Wang, L. Zhang and W. Zhang, State and parameter estimation based on a modified particle filter for an in-wheel-motor-drive electric vehicle, Mech. Mach. Theory, 133 (2019), 606-624.
doi: 10.1016/j.mechmachtheory.2018.12.008.![]() ![]() |
Two parameters are recovered simultaneously. When applicable, the third parameter is fixed at
Parameter recovery with observations every 500 time-steps and either (A) stochastic forcing (of amplitude
Parameter recovery with observations every 500 time-steps and both stochastic forcing (of amplitude
The parameter learning algorithm is applied to the true parameters
Schematic of the threshold defined by (3.1)
(Left) The parameter learning algorithm is used to recover
(Log-linear plots) Parameter recovery with observations every 500 time-steps.