-
Previous Article
A fixed point theorem for twist maps
- DCDS Home
- This Issue
-
Next Article
Unfolding globally resonant homoclinic tangencies
Local behavior of solutions to a fractional equation with isolated singularity and critical Serrin exponent
1. | Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada |
2. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China |
$ \begin{equation*} (-\Delta)^{\sigma}u = u^{\frac{n}{n-2\sigma}}\quad \;{\rm{in }}\;B_{1}\backslash\{0\} \end{equation*} $ |
$ (-\Delta)^{\sigma} $ |
$ 0<\sigma<1 $ |
$ \frac{n}{n-2\sigma} $ |
$ u $ |
$ c_{1} $ |
$ c_{2} $ |
$ \begin{equation*} c_{1}|x|^{2\sigma-n}(-\ln{|x|})^{-\frac{n-2\sigma}{2\sigma}}\leq u(x)\leq c_{2}|x|^{2\sigma-n}(-\ln{|x|})^{-\frac{n-2\sigma}{2\sigma}}\quad\;{\rm{in }}\; B_{1}\backslash\{0\}. \end{equation*} $ |
References:
[1] |
P. Aviles,
On isolated singularities in some nonlinear partial differential equations, Indiana Univ. Math. J., 32 (1983), 773-791.
doi: 10.1512/iumj.1983.32.32051. |
[2] |
P. Aviles,
Local behavior of solutions of some elliptic equations, Comm. Math. Phys., 108 (1987), 177-192.
doi: 10.1007/BF01210610. |
[3] |
W. Ao, H. Chan, A. DelaTorre, M. A. Fontelos, M. del Mar González and J. Wei,
On higher dimensional singularities for the fractional Yamabe problem: A non-local Mazzeo-Pacard program, Duke Math. J., 168 (2019), 3297-3411.
doi: 10.1215/00127094-2019-0034. |
[4] |
W. Ao, H. Chan, A. DelaTorre, M. A. Fontelos, M. del Mar González and J. Wei, Existence of positive weak solutions for fractional Lane-Emden equations with prescribed singular sets, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 149, 25 pp. |
[5] |
W. Ao, H. Chan, M. del Mar González, A. Hyder and J. Wei, Removability of singularities and superharmonicity for some fractional Laplacian equations, preprint, 2020, arXiv: 2001.11683v2. |
[6] |
M.-F. Bidaut-Véron and L. Véron,
Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489-539.
doi: 10.1007/BF01243922. |
[7] |
L. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[8] |
L. Caffarelli, T. Jin, Y. Sire and J. Xiong,
Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities, Arch. Ration. Mech. Anal., 213 (2014), 245-268.
doi: 10.1007/s00205-014-0722-4. |
[9] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[10] |
H. Chan and A. DelaTorre,
An analytic construction of singular solutions related to a critical Yamabe problem, Comm. Partial Differential Equations, 45 (2020), 1621-1646.
doi: 10.1080/03605302.2020.1784209. |
[11] |
H. Chan and A. DelaTorre, Singular solutions of a critical fractional Yamabe problem, Work in progress. |
[12] |
C.-C. Chen and C. Lin,
Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations, J. Geom. Anal., 9 (1999), 221-246.
doi: 10.1007/BF02921937. |
[13] |
H. Chen and A. Quaas,
Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results, J. Lond. Math. Soc., 97 (2018), 196-221.
doi: 10.1112/jlms.12104. |
[14] |
A. DelaTorre, M. del Pino, M. González and J. Wei,
Delaunay-type singular solutions for the fractional Yamabe problem, Math. Ann., 369 (2017), 597-626.
doi: 10.1007/s00208-016-1483-1. |
[15] |
M. Fall and V. Felli,
Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397.
doi: 10.1080/03605302.2013.825918. |
[16] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[17] |
T. Jin, Y. Li and J. Xiong,
On a fractional Nirenberg problem, part Ⅰ: Blow up analysis and compactness of solutions, J. Eur. Math. Soc., 16 (2014), 1111-1171.
doi: 10.4171/JEMS/456. |
[18] |
Y. Li and J. Bao,
Local behavior of solutions to fractional Hardy-H$\acute{e}$non equations with isolated singularity, Ann. Mat. Pura Appl., 198 (2019), 41-59.
doi: 10.1007/s10231-018-0761-9. |
[19] |
R. Mazzeo and F. Pacard,
A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differential Geom., 44 (1996), 331-370.
|
[20] |
F. Pacard,
Existence and convergence of positive weak solutions of $-\Delta u = u^{\frac{n}{n-2}}$ in bounded domains of $\mathbb{R}^{n}, n\geq3$., Calc. Var. Partial Differential Equations, 1 (1993), 243-265.
doi: 10.1007/BF01191296. |
[21] |
N. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, 1968. |
[22] |
H. Yang and W. Zou,
Exact asymptotic behavior of singular positive solutions of fractional semi-linear elliptic equations, Proc. Amer. Math. Soc., 147 (2019), 2999-3009.
doi: 10.1090/proc/14448. |
[23] |
H. Yang and W. Zou,
On isolated singularities of fractional semi-linear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 403-420.
doi: 10.1016/j.anihpc.2020.07.003. |
show all references
References:
[1] |
P. Aviles,
On isolated singularities in some nonlinear partial differential equations, Indiana Univ. Math. J., 32 (1983), 773-791.
doi: 10.1512/iumj.1983.32.32051. |
[2] |
P. Aviles,
Local behavior of solutions of some elliptic equations, Comm. Math. Phys., 108 (1987), 177-192.
doi: 10.1007/BF01210610. |
[3] |
W. Ao, H. Chan, A. DelaTorre, M. A. Fontelos, M. del Mar González and J. Wei,
On higher dimensional singularities for the fractional Yamabe problem: A non-local Mazzeo-Pacard program, Duke Math. J., 168 (2019), 3297-3411.
doi: 10.1215/00127094-2019-0034. |
[4] |
W. Ao, H. Chan, A. DelaTorre, M. A. Fontelos, M. del Mar González and J. Wei, Existence of positive weak solutions for fractional Lane-Emden equations with prescribed singular sets, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 149, 25 pp. |
[5] |
W. Ao, H. Chan, M. del Mar González, A. Hyder and J. Wei, Removability of singularities and superharmonicity for some fractional Laplacian equations, preprint, 2020, arXiv: 2001.11683v2. |
[6] |
M.-F. Bidaut-Véron and L. Véron,
Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489-539.
doi: 10.1007/BF01243922. |
[7] |
L. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[8] |
L. Caffarelli, T. Jin, Y. Sire and J. Xiong,
Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities, Arch. Ration. Mech. Anal., 213 (2014), 245-268.
doi: 10.1007/s00205-014-0722-4. |
[9] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[10] |
H. Chan and A. DelaTorre,
An analytic construction of singular solutions related to a critical Yamabe problem, Comm. Partial Differential Equations, 45 (2020), 1621-1646.
doi: 10.1080/03605302.2020.1784209. |
[11] |
H. Chan and A. DelaTorre, Singular solutions of a critical fractional Yamabe problem, Work in progress. |
[12] |
C.-C. Chen and C. Lin,
Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations, J. Geom. Anal., 9 (1999), 221-246.
doi: 10.1007/BF02921937. |
[13] |
H. Chen and A. Quaas,
Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results, J. Lond. Math. Soc., 97 (2018), 196-221.
doi: 10.1112/jlms.12104. |
[14] |
A. DelaTorre, M. del Pino, M. González and J. Wei,
Delaunay-type singular solutions for the fractional Yamabe problem, Math. Ann., 369 (2017), 597-626.
doi: 10.1007/s00208-016-1483-1. |
[15] |
M. Fall and V. Felli,
Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397.
doi: 10.1080/03605302.2013.825918. |
[16] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[17] |
T. Jin, Y. Li and J. Xiong,
On a fractional Nirenberg problem, part Ⅰ: Blow up analysis and compactness of solutions, J. Eur. Math. Soc., 16 (2014), 1111-1171.
doi: 10.4171/JEMS/456. |
[18] |
Y. Li and J. Bao,
Local behavior of solutions to fractional Hardy-H$\acute{e}$non equations with isolated singularity, Ann. Mat. Pura Appl., 198 (2019), 41-59.
doi: 10.1007/s10231-018-0761-9. |
[19] |
R. Mazzeo and F. Pacard,
A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differential Geom., 44 (1996), 331-370.
|
[20] |
F. Pacard,
Existence and convergence of positive weak solutions of $-\Delta u = u^{\frac{n}{n-2}}$ in bounded domains of $\mathbb{R}^{n}, n\geq3$., Calc. Var. Partial Differential Equations, 1 (1993), 243-265.
doi: 10.1007/BF01191296. |
[21] |
N. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, 1968. |
[22] |
H. Yang and W. Zou,
Exact asymptotic behavior of singular positive solutions of fractional semi-linear elliptic equations, Proc. Amer. Math. Soc., 147 (2019), 2999-3009.
doi: 10.1090/proc/14448. |
[23] |
H. Yang and W. Zou,
On isolated singularities of fractional semi-linear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 403-420.
doi: 10.1016/j.anihpc.2020.07.003. |
[1] |
Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239 |
[2] |
Jianfeng Huang, Yulin Zhao. Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2861-2883. doi: 10.3934/dcds.2013.33.2861 |
[3] |
Eric Todd Quinto, Hans Rullgård. Local singularity reconstruction from integrals over curves in $\mathbb{R}^3$. Inverse Problems and Imaging, 2013, 7 (2) : 585-609. doi: 10.3934/ipi.2013.7.585 |
[4] |
Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91 |
[5] |
Zied Douzi, Bilel Selmi. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28 (1) : 423-432. doi: 10.3934/era.2020024 |
[6] |
Carles Bonet-Revés, Tere M-Seara. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3545-3601. doi: 10.3934/dcds.2016.36.3545 |
[7] |
Soumya Kundu, Soumitro Banerjee, Damian Giaouris. Vanishing singularity in hard impacting systems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 319-332. doi: 10.3934/dcdsb.2011.16.319 |
[8] |
Yimei Li, Jiguang Bao. Semilinear elliptic system with boundary singularity. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2189-2212. doi: 10.3934/dcds.2020111 |
[9] |
Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557 |
[10] |
Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083 |
[11] |
Xiao Wen, Lan Wen. No-shadowing for singular hyperbolic sets with a singularity. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 6043-6059. doi: 10.3934/dcds.2020258 |
[12] |
Zhihua Liu, Rong Yuan. Takens–Bogdanov singularity for age structured models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2041-2056. doi: 10.3934/dcdsb.2019201 |
[13] |
Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721 |
[14] |
Congming Li, Jisun Lim. The singularity analysis of solutions to some integral equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 453-464. doi: 10.3934/cpaa.2007.6.453 |
[15] |
Freddy Dumortier, Santiago Ibáñez, Hiroshi Kokubu, Carles Simó. About the unfolding of a Hopf-zero singularity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4435-4471. doi: 10.3934/dcds.2013.33.4435 |
[16] |
Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27 |
[17] |
Anja Randecker, Giulio Tiozzo. Cusp excursion in hyperbolic manifolds and singularity of harmonic measure. Journal of Modern Dynamics, 2021, 17: 183-211. doi: 10.3934/jmd.2021006 |
[18] |
Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834 |
[19] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure and Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[20] |
Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]