This paper is concerned with the volume-filling effect on global solvability and stabilization in a parabolic-elliptic Keller-Segel-Stokes systems
$\begin{align} \left\{ \begin{array}{l} n_t+u\cdot\nabla n = \Delta n-\nabla\cdot(nS(n)\nabla c),\quad x\in \Omega, t>0,\\ u\cdot\nabla c = \Delta c-c+n,\quad x\in \Omega, t>0,\\ u_t+\nabla P = \Delta u+n\nabla \phi,\quad x\in \Omega, t>0,\\ \nabla\cdot u = 0,\quad x\in \Omega, t>0\\ \end{array}\right. \end{align} \;\;\;\;\;\;\;\;\;\;\;\;(KSF)$
with no-flux boundary conditions for
$ |S(n)|\leq C_S(1 + n)^{-\alpha} \; \; \; \; \text{for all}\; \; n\geq0 $
with some
Citation: |
[1] |
X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.
doi: 10.1512/iumj.2016.65.5776.![]() ![]() ![]() |
[2] |
R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35 (2010), 1635-1673.
doi: 10.1080/03605302.2010.497199.![]() ![]() ![]() |
[3] |
Y. Ke and J. Zheng, An optimal result for global existence in a three-dimensional Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Differential Equations, 58 (2019), 27pp.
doi: 10.1007/s00526-019-1568-2.![]() ![]() ![]() |
[4] |
K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.
![]() ![]() |
[5] |
Y. Peng and Z. Xiang, Global existence and boundedness in a 3D Keller–Segel–Stokes system with nonlinear diffusion and rotational flux, Z. Angew. Math. Phys., 68 (2017), 26pp.
doi: 10.1007/s00033-017-0816-6.![]() ![]() ![]() |
[6] |
H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001.
doi: 10.1007/978-3-0348-8255-2.![]() ![]() ![]() |
[7] |
Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157-178.
doi: 10.1016/j.anihpc.2012.07.002.![]() ![]() ![]() |
[8] |
Y. Wang, M. Winkler and Z. Xiang, Global classical solutions in a two-dimensional chemotaxis–Navier–Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18 (2018), 421-466.
doi: 10.2422/2036-2145.201603_004.![]() ![]() ![]() |
[9] |
Y. Wang and Z. Xiang, Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation, J. Differential Equations, 259 (2015), 7578-7609.
doi: 10.1016/j.jde.2015.08.027.![]() ![]() ![]() |
[10] |
Y. Wang and Z. Xiang, Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: The 3D case, J. Differential Equations, 261 (2016), 4944-4973.
doi: 10.1016/j.jde.2016.07.010.![]() ![]() ![]() |
[11] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
[12] |
M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differential Equations, 54 (2015), 3789-3828.
doi: 10.1007/s00526-015-0922-2.![]() ![]() ![]() |
[13] |
M. Winkler, Does fluid interaction affect regularity in the three-dimensional Keller–Segel System with saturated sensitivity?, J. Math. Fluid Mech., 20 (2018), 1889-1909.
doi: 10.1007/s00021-018-0395-0.![]() ![]() ![]() |
[14] |
M. Winkler, Global existence and stabilization in a degenerate chemotaxis–Stokes system with mildly strong diffusion enhancement, J. Differential Equations, 264 (2018), 6109-6151.
doi: 10.1016/j.jde.2018.01.027.![]() ![]() ![]() |
[15] |
M. Winkler, Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865.![]() ![]() ![]() |
[16] |
M. Winkler, Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.
doi: 10.1016/j.anihpc.2015.05.002.![]() ![]() ![]() |
[17] |
M. Winkler, Stabilization in a two-dimensional chemotaxis–Navier–Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9.![]() ![]() ![]() |
[18] |
M. Winkler, A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: Global weak solutions and asymptotic stabilization, J. Funct. Anal., 276 (2019), 1339-1401.
doi: 10.1016/j.jfa.2018.12.009.![]() ![]() ![]() |
[19] |
Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis–Navier–Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105.
doi: 10.1137/130936920.![]() ![]() ![]() |
[20] |
J. Zheng, Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux, Calc. Var. Partial Differential Equations, 61 (2022), 34pp.
doi: 10.1007/s00526-021-02164-6.![]() ![]() ![]() |
[21] |
J. Zheng, Global classical solutions and stabilization in a two-dimensional parabolic–elliptic Keller–Segel–Stokes system, J. Math. Fluid Mech., 23 (2021), 25pp.
doi: 10.1007/s00021-021-00600-3.![]() ![]() ![]() |
[22] |
J. Zheng, Global existence and boundedness in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion and general sensitivity, Ann. Mat. Pura Appl. (4), 201 (2022), 243-288.
doi: 10.1007/s10231-021-01115-4.![]() ![]() ![]() |
[23] |
J. Zheng, A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, J. Differential Equations, 272 (2021), 164-202.
doi: 10.1016/j.jde.2020.09.029.![]() ![]() ![]() |
[24] |
J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller–Segel–Stokes system with nonlinear diffusion, J. Differential Equations, 267 (2019), 2385-2415.
doi: 10.1016/j.jde.2019.03.013.![]() ![]() ![]() |
[25] |
J. Zheng and Y. Ke, Blow-up prevention by nonlinear diffusion in a 2D Keller–Segel–Navier–Stokes system with rotational flux, J. Differential Equations, 268 (2020), 7092-7120.
doi: 10.1016/j.jde.2019.11.071.![]() ![]() ![]() |
[26] |
J. Zheng and Y. Ke, Global bounded weak solutions for a chemotaxis–Stokes system with nonlinear diffusion and rotation, J. Differential Equations, 289 (2021), 182-235.
doi: 10.1016/j.jde.2021.04.020.![]() ![]() ![]() |