In this paper, we consider the Neumann problem of a class of mixed complex Hessian equations $ \sigma_k(\partial \bar{\partial} u) = \sum\limits _{l = 0}^{k-1} \alpha_l(z) \sigma_l (\partial \bar{\partial} u) $ with $ 2 \leq k \leq n $, and establish the global $ C^1 $ estimates and reduce the global second derivative estimate to the estimate of double normal second derivatives on the boundary. In particular, we can prove the global $ C^2 $ estimates and the existence theorems when $ k = n $.
Citation: |
[1] |
L. Caffarelli, J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. Ⅱ. Complex Monge-Ampère and uniformly elliptic equations, Comm. Pure Applied Math., 38 (1985), 209-252.
doi: 10.1002/cpa.3160380206.![]() ![]() ![]() |
[2] |
L. Caffarelli, L. Nirenberg and J. Spruck, Dirichlet problem for nonlinear second order elliptic equations Ⅰ, Monge-Ampère equations, Comm. Pure Appl. Math., 37 (1984), 369-402.
doi: 10.1002/cpa.3160370306.![]() ![]() ![]() |
[3] |
L. Caffarelli, L. Nirenberg and J. Spruck, Dirichlet problem for nonlinear second order elliptic equations Ⅲ, Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261-301.
doi: 10.1007/BF02392544.![]() ![]() ![]() |
[4] |
C. Q. Chen, L. Chen, X. Q. Mei and N. Xiang, The classical neumann problem for a class of mixed Hessian equations, Stud. Appl. Math., 148 (2022), 5-26.
![]() |
[5] |
C. Q. Chen and W. Wei, The Neumann problem of complex Hessian quotient equations, Int. Math. Res. Not., 2021 (2021), 17652-17672.
doi: 10.1093/imrn/rnaa081.![]() ![]() ![]() |
[6] |
C. Q. Chen and D. K. Zhang, The Neumann problem of Hessian quotient equations, Bull. Math. Sci., 11 (2021), Paper No. 2050018, 26 pp.
doi: 10.1142/S1664360720500186.![]() ![]() ![]() |
[7] |
K. S. Chou and X. J. Wang, A variation theory of the Hessian equation, Comm. Pure Appl. Math., 54 (2001), 1029-1064.
doi: 10.1002/cpa.1016.![]() ![]() ![]() |
[8] |
J. X. Fu and S. T. Yau, A Monge-Ampère type equation motivated by string theorey, Comm. Anal. Geom., 15 (2007), 29-75.
doi: 10.4310/CAG.2007.v15.n1.a2.![]() ![]() ![]() |
[9] |
J. X. Fu and S. T. Yau, The theory of superstring with flux on non-K$\ddot{a}$hler manifolds and the complex Monge-Ampère equation, J. Diff. Geom., 78 (2008), 369-428.
![]() ![]() |
[10] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977.
![]() ![]() |
[11] |
P. F. Guan and X. W. Zhang, A class of curvature type equations, Pure Appl. Math. Q., 17 (2021), 865-907.
doi: 10.4310/PAMQ.2021.v17.n3.a2.![]() ![]() ![]() |
[12] |
R. Harvey and B. Lawson, Calibrated geometries, Acta Math., 148 (1982), 47-157.
doi: 10.1007/BF02392726.![]() ![]() ![]() |
[13] |
Z. L. Hou, X. N. Ma and D. M. Wu, A second order estimate for complex Hessian equations on a compact Kähler manifold, Math. Res. Lett., 17 (2010), 547-561.
doi: 10.4310/MRL.2010.v17.n3.a12.![]() ![]() ![]() |
[14] |
G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183 (1999), 45-70.
doi: 10.1007/BF02392946.![]() ![]() ![]() |
[15] |
N. Ivochkina, Solutions of the Dirichlet problem for certain equations of Monge-Ampère type (in Russian), Mat. Sb., 128 (1985), 403-415.
![]() ![]() |
[16] |
F. D. Jiang and N. Trudinger, Oblique boundary value problems for augmented Hessian equations Ⅰ, Bull. Math. Sci., 8 (2018), 353-411.
doi: 10.1007/s13373-018-0124-2.![]() ![]() ![]() |
[17] |
F. D. Jiang and N. Trudinger, Oblique boundary value problems for augmented Hessian equations Ⅱ, Nonlinear Anal., 154 (2017), 148-173.
doi: 10.1016/j.na.2016.08.007.![]() ![]() ![]() |
[18] |
F. D. Jiang and N. Trudinger, Oblique boundary value problems for augmented Hessian equation Ⅲ, Comm. Part. Diff. Equa., 44 (2019), 708-748.
doi: 10.1080/03605302.2019.1597113.![]() ![]() ![]() |
[19] |
N. V. Krylov, On the general notion of fully nonlinear second order elliptic equation, Trans. Amer. Math. Soc., 347 (1995), 857-895.
doi: 10.1090/S0002-9947-1995-1284912-8.![]() ![]() ![]() |
[20] |
S. Y. Li, On the Neumann problems for Complex Monge-Ampère equations, Indiana Univ. Math. J., 43 (1994), 1099-1122.
doi: 10.1512/iumj.1994.43.43048.![]() ![]() ![]() |
[21] |
Y. Y. Li, Interior gradient estimates for solutions of certain fully nonlinear elliptic equations, J. Diff. Equa., 90 (1991), 172-185.
doi: 10.1016/0022-0396(91)90166-7.![]() ![]() ![]() |
[22] |
G. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/3302.![]() ![]() ![]() |
[23] |
G. Lieberman, Oblique Boundary Value Problems for Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
doi: 10.1142/8679.![]() ![]() ![]() |
[24] |
G. Lieberman and N. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. Amer. Math. Soc., 295 (1986), 509-546.
doi: 10.1090/S0002-9947-1986-0833695-6.![]() ![]() ![]() |
[25] |
M. Lin and N. S. Trudinger, On some inequalities for elementary symmetric functions, Bull. Austral. Math. Soc., 50 (1994), 317-326.
doi: 10.1017/S0004972700013770.![]() ![]() ![]() |
[26] |
P. L. Lions, N. Trudinger and J. Urbas, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math., 39 (1986), 539-563.
doi: 10.1002/cpa.3160390405.![]() ![]() ![]() |
[27] |
X. N. Ma and G. H. Qiu, The Neumann problem for hessian equations, Comm. Math. Phys., 366 (2019), 1-28.
doi: 10.1007/s00220-019-03339-1.![]() ![]() ![]() |
[28] |
G. H. Qiu and C. Xia, Classical Neumann problems for hessian equations and Alexandrov-Fenchel's inequalities, Int. Math. Res. Not., 2019 (2019), 6285-6303.
doi: 10.1093/imrn/rnx296.![]() ![]() ![]() |
[29] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University, 1993.
doi: 10.1017/CBO9780511526282.![]() ![]() ![]() |
[30] |
J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, Amer. Math. Soc., Providence, RI, 2 (2005), 283-309.
![]() ![]() |
[31] |
N. Trudinger, On degenerate fully nonlinear elliptic equations in balls, Bull. Aust. Math. Soc., 35 (1987), 299-307.
doi: 10.1017/S0004972700013253.![]() ![]() ![]() |
[32] |
N. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math., 175 (1995), 151-164.
doi: 10.1007/BF02393303.![]() ![]() ![]() |
[33] |
J. Urbas, Nonlinear oblique boundary value problems for Hessian equations in two dimensions, Ann. Inst. H. Poincarè-Anal. Non Lin., 12 (1995), 507-575.
doi: 10.1016/s0294-1449(16)30150-0.![]() ![]() ![]() |
[34] |
J. Urbas, Nonlinear oblique boundary value problems for two-dimensional curvature equations, Adv. Diff. Equa., 1 (1996), 301-336.
![]() ![]() |