September  2022, 42(9): 4415-4438. doi: 10.3934/dcds.2022059

Critical gauged Schrödinger equations in $ \mathbb{R}^2 $ with vanishing potentials

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

2. 

Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore, Via della Garzetta 48, 25133, Brescia, Italy

*Corresponding author: Marco Squassina

Received  October 2021 Revised  March 2022 Published  September 2022 Early access  April 2022

Fund Project: Marco Squassina is member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Minbo Yang was partially supported by NSFC (11971436, 12011530199) and ZJNSF(LZ22A010001, LD19A010001)

We study a class of gauged nonlinear Schrödinger equations in the plane
$ \left\{ \begin{array}{l} -\Delta u+V(|x|) u+\lambda\bigg(\int_{|x|}^\infty \frac{h_u(s)}{s}u^2(s)ds+\frac{h_u^2(|x|)}{|x|^2} \bigg)u\\\qquad \, = K(|x|)f(u)+\mu g(|x|)|u|^{q-2}u, \\ u(x) = u(|x|) \; {\rm{in}}\; \mathbb{R}^2, \\\\ \end{array} \right. $
where
$ h_u(s) = \int_0^s\frac{r}{2}u^2(r)dr $
,
$ \lambda,\mu>0 $
are constants,
$ V(|x|) $
and
$ K(|x|) $
are continuous functions vanishing at infinity. Assume that
$ f $
is of critical exponential growth and
$ g(x) = g(|x|) $
satisfies some technical assumptions with
$ 1\leq q<2 $
, we obtain the existence of two nontrivial solutions via the Mountain-Pass theorem and Ekeland's variational principle. Moreover, with the help of the genus theory, we prove the existence of infinitely many solutions if
$ f $
in addition is odd.
Citation: Liejun Shen, Marco Squassina, Minbo Yang. Critical gauged Schrödinger equations in $ \mathbb{R}^2 $ with vanishing potentials. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4415-4438. doi: 10.3934/dcds.2022059
References:
[1]

Ad imurthi and S. L. Yadava, Multiplicity results for semilinear elliptic equations in bounded domain of $\mathbb{R}^{2}$ involving critical exponent, Ann. Sc. Norm. Super. Pisa, 17 (1990), 481-504. 

[2]

Ad imurthi and Y. Yang, An interpolation of Hardy inequality and Trudinger-Moser inequality in $ \mathbb{R}^N$ and its applications, Int. Math. Res. Not. IMRN, 2010 (2010), 2394-2426.  doi: 10.1093/imrn/rnp194.

[3]

F. S. B. Albuquerque, J. L. Carvalho, G. M. Figueiredo and E. S. Medeiros, On a planar non-autonomous Schrödinger-Poisson system involving exponential critical growth, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 40, 30 pp. doi: 10.1007/s00526-020-01902-6.

[4]

F. S. B. AlbuquerqueM. C. Ferreira and U. B. Severo, Ground state solutions for a nonlocal equation in $ \mathbb{R}^2$ involving vanishing potentials and exponential critical growth, Milan J. Math., 89 (2021), 263-294.  doi: 10.1007/s00032-021-00334-x.

[5]

C. O. AlvesM. A. Souto and M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations, 43 (2012), 537-554.  doi: 10.1007/s00526-011-0422-y.

[6]

J. G. Azorero and I. P. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.  doi: 10.1090/S0002-9947-1991-1083144-2.

[7]

A. Azzollini and A. Pomponio, Positive energy static solutions for the Chern-Simons-Schrödinger system under a large-distance fall-off requirement on the gauge potentials, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 165, 30 pp. doi: 10.1007/s00526-021-02031-4.

[8]

H. BerestyckiT. Gallouët and O. Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Sér. I Math., 297 (1983), 307-310. 

[9]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[10]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅱ. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.

[11]

L. BergéA. de Bouard and J. C. Saut, Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.  doi: 10.1088/0951-7715/8/2/007.

[12]

J. ByeonH. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.  doi: 10.1016/j.jfa.2012.05.024.

[13]

J. ByeonH. Huh and J. Seok, On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285-1316.  doi: 10.1016/j.jde.2016.04.004.

[14]

D. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $ \mathbb{R}^2$, Commun. Partial Differential Equations, 17 (1992), 407-435.  doi: 10.1080/03605309208820848.

[15]

P. CunhaP. d'AveniaA. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differential Equations Appl., 22 (2015), 1831-1850.  doi: 10.1007/s00030-015-0346-x.

[16]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.

[17]

M. de Souza and J. M. do Ó, A sharp Trudinger-Moser type inequality in $ \mathbb{R}^2$, Trans. Amer. Math. Soc., 366 (2014), 4513-4549.  doi: 10.1090/S0002-9947-2014-05811-X.

[18]

Y. DengS. Peng and W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in $ \mathbb{R}^2$, J. Differential Equations, 264 (2018), 4006-4035.  doi: 10.1016/j.jde.2017.12.003.

[19]

M. Dong and G. Lu, Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partical Differential Equations, 55 (2016), Art. 88, 26 pp. doi: 10.1007/s00526-016-1014-7.

[20]

J. M. do Ó, N-Laplacian equations in $ \mathbb{R}^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.  doi: 10.1155/S1085337597000419.

[21]

J. M. do ÓE. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.  doi: 10.1016/j.jmaa.2008.03.074.

[22]

J. M. do ÓE. Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in $ \mathbb{R}^n$, J. Differential Equations, 246 (2009), 1363-1386.  doi: 10.1016/j.jde.2008.11.020.

[23]

G. Dunne, Self-Dual Chern-Simons Theories, Springer, 1995. doi: 10.1007/978-3-540-44777-1.

[24]

I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474.  doi: 10.1090/S0273-0979-1979-14595-6.

[25]

H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974.  doi: 10.1088/0951-7715/22/5/003.

[26]

R. Jackiw and S. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.

[27]

R. Jackiw and S. Pi, Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1-40.  doi: 10.1143/PTPS.107.1.

[28]

C. Ji and F. Fang, Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 450 (2017), 578-591.  doi: 10.1016/j.jmaa.2017.01.065.

[29]

Y. Jiang, A. Pomponio and D. Ruiz, Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Commun. Contemp. Math., 18 (2016), 1550074, 20 pp. doi: 10.1142/S0219199715500741.

[30]

R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.  doi: 10.1016/j.jfa.2005.04.005.

[31]

M. A. Krasnoselski$\mathop {\rm{i}}\limits^ \vee $, Topological Methods in the Theory of Nonlinear Integral Equations, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.

[32]

N. Lam and G. Lu, Existence and multiplicity of solutions to equations of $N$-Laplacian type with critical exponential growth in $ \mathbb{R}^N$, J. Funct. Anal., 262 (2012), 1132-1165.  doi: 10.1016/j.jfa.2011.10.012.

[33]

Y. Li and B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^{N}$, Indiana Univ. Math. J., 57 (2008), 451-480.  doi: 10.1512/iumj.2008.57.3137.

[34]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Ⅰ, Rev. Mat. Iberoam, 1 (1985), 145-201.  doi: 10.4171/RMI/6.

[35]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/1971), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.

[36]

S. I. Pohozaev, The Sobolev embedding in the case $pl = n$, In: Proc. Tech. Sci. Conf. on Adv. Sci., Research, 1964–1965; Math. Section, Moscow, (1965), 158–170.

[37]

A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486.  doi: 10.4171/JEMS/535.

[38]

A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316.  doi: 10.1007/s00526-014-0749-2.

[39]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, In: CBMS Regional Conference Series in Mathematics, vol. 65, AMS, Providence RI, 1986. doi: 10.1090/cbms/065.

[40]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^2$, J. Funct. Anal., 219 (2005), 340-367.  doi: 10.1016/j.jfa.2004.06.013.

[41]

W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.

[42]

J. SuZ.-Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math., 9 (2007), 571-583.  doi: 10.1142/S021919970700254X.

[43]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484.  doi: 10.1512/iumj.1968.17.17028.

[44]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.

[45]

Y. Yang and X. Zhu, Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two, J. Funct. Anal., 272 (2017), 3347-3374.  doi: 10.1016/j.jfa.2016.12.028.

show all references

References:
[1]

Ad imurthi and S. L. Yadava, Multiplicity results for semilinear elliptic equations in bounded domain of $\mathbb{R}^{2}$ involving critical exponent, Ann. Sc. Norm. Super. Pisa, 17 (1990), 481-504. 

[2]

Ad imurthi and Y. Yang, An interpolation of Hardy inequality and Trudinger-Moser inequality in $ \mathbb{R}^N$ and its applications, Int. Math. Res. Not. IMRN, 2010 (2010), 2394-2426.  doi: 10.1093/imrn/rnp194.

[3]

F. S. B. Albuquerque, J. L. Carvalho, G. M. Figueiredo and E. S. Medeiros, On a planar non-autonomous Schrödinger-Poisson system involving exponential critical growth, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 40, 30 pp. doi: 10.1007/s00526-020-01902-6.

[4]

F. S. B. AlbuquerqueM. C. Ferreira and U. B. Severo, Ground state solutions for a nonlocal equation in $ \mathbb{R}^2$ involving vanishing potentials and exponential critical growth, Milan J. Math., 89 (2021), 263-294.  doi: 10.1007/s00032-021-00334-x.

[5]

C. O. AlvesM. A. Souto and M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations, 43 (2012), 537-554.  doi: 10.1007/s00526-011-0422-y.

[6]

J. G. Azorero and I. P. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.  doi: 10.1090/S0002-9947-1991-1083144-2.

[7]

A. Azzollini and A. Pomponio, Positive energy static solutions for the Chern-Simons-Schrödinger system under a large-distance fall-off requirement on the gauge potentials, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 165, 30 pp. doi: 10.1007/s00526-021-02031-4.

[8]

H. BerestyckiT. Gallouët and O. Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Sér. I Math., 297 (1983), 307-310. 

[9]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[10]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅱ. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.

[11]

L. BergéA. de Bouard and J. C. Saut, Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.  doi: 10.1088/0951-7715/8/2/007.

[12]

J. ByeonH. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.  doi: 10.1016/j.jfa.2012.05.024.

[13]

J. ByeonH. Huh and J. Seok, On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285-1316.  doi: 10.1016/j.jde.2016.04.004.

[14]

D. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $ \mathbb{R}^2$, Commun. Partial Differential Equations, 17 (1992), 407-435.  doi: 10.1080/03605309208820848.

[15]

P. CunhaP. d'AveniaA. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differential Equations Appl., 22 (2015), 1831-1850.  doi: 10.1007/s00030-015-0346-x.

[16]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.

[17]

M. de Souza and J. M. do Ó, A sharp Trudinger-Moser type inequality in $ \mathbb{R}^2$, Trans. Amer. Math. Soc., 366 (2014), 4513-4549.  doi: 10.1090/S0002-9947-2014-05811-X.

[18]

Y. DengS. Peng and W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in $ \mathbb{R}^2$, J. Differential Equations, 264 (2018), 4006-4035.  doi: 10.1016/j.jde.2017.12.003.

[19]

M. Dong and G. Lu, Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partical Differential Equations, 55 (2016), Art. 88, 26 pp. doi: 10.1007/s00526-016-1014-7.

[20]

J. M. do Ó, N-Laplacian equations in $ \mathbb{R}^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.  doi: 10.1155/S1085337597000419.

[21]

J. M. do ÓE. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.  doi: 10.1016/j.jmaa.2008.03.074.

[22]

J. M. do ÓE. Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in $ \mathbb{R}^n$, J. Differential Equations, 246 (2009), 1363-1386.  doi: 10.1016/j.jde.2008.11.020.

[23]

G. Dunne, Self-Dual Chern-Simons Theories, Springer, 1995. doi: 10.1007/978-3-540-44777-1.

[24]

I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474.  doi: 10.1090/S0273-0979-1979-14595-6.

[25]

H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974.  doi: 10.1088/0951-7715/22/5/003.

[26]

R. Jackiw and S. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.

[27]

R. Jackiw and S. Pi, Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1-40.  doi: 10.1143/PTPS.107.1.

[28]

C. Ji and F. Fang, Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 450 (2017), 578-591.  doi: 10.1016/j.jmaa.2017.01.065.

[29]

Y. Jiang, A. Pomponio and D. Ruiz, Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Commun. Contemp. Math., 18 (2016), 1550074, 20 pp. doi: 10.1142/S0219199715500741.

[30]

R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.  doi: 10.1016/j.jfa.2005.04.005.

[31]

M. A. Krasnoselski$\mathop {\rm{i}}\limits^ \vee $, Topological Methods in the Theory of Nonlinear Integral Equations, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.

[32]

N. Lam and G. Lu, Existence and multiplicity of solutions to equations of $N$-Laplacian type with critical exponential growth in $ \mathbb{R}^N$, J. Funct. Anal., 262 (2012), 1132-1165.  doi: 10.1016/j.jfa.2011.10.012.

[33]

Y. Li and B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^{N}$, Indiana Univ. Math. J., 57 (2008), 451-480.  doi: 10.1512/iumj.2008.57.3137.

[34]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Ⅰ, Rev. Mat. Iberoam, 1 (1985), 145-201.  doi: 10.4171/RMI/6.

[35]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/1971), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.

[36]

S. I. Pohozaev, The Sobolev embedding in the case $pl = n$, In: Proc. Tech. Sci. Conf. on Adv. Sci., Research, 1964–1965; Math. Section, Moscow, (1965), 158–170.

[37]

A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486.  doi: 10.4171/JEMS/535.

[38]

A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316.  doi: 10.1007/s00526-014-0749-2.

[39]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, In: CBMS Regional Conference Series in Mathematics, vol. 65, AMS, Providence RI, 1986. doi: 10.1090/cbms/065.

[40]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^2$, J. Funct. Anal., 219 (2005), 340-367.  doi: 10.1016/j.jfa.2004.06.013.

[41]

W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.

[42]

J. SuZ.-Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math., 9 (2007), 571-583.  doi: 10.1142/S021919970700254X.

[43]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484.  doi: 10.1512/iumj.1968.17.17028.

[44]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.

[45]

Y. Yang and X. Zhu, Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two, J. Funct. Anal., 272 (2017), 3347-3374.  doi: 10.1016/j.jfa.2016.12.028.

[1]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[2]

Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3971-3989. doi: 10.3934/dcdsb.2021214

[3]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[4]

Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273

[5]

Caixia Chen, Aixia Qian. Multiple positive solutions for the Schrödinger-Poisson equation with critical growth. Mathematical Foundations of Computing, 2022, 5 (2) : 113-128. doi: 10.3934/mfc.2021036

[6]

Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure and Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[8]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[9]

Eduard Toon, Pedro Ubilla. Existence of positive solutions of Schrödinger equations with vanishing potentials. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5831-5843. doi: 10.3934/dcds.2020248

[10]

Juan Arratia, Denilson Pereira, Pedro Ubilla. Elliptic systems involving Schrödinger operators with vanishing potentials. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1369-1401. doi: 10.3934/dcds.2021156

[11]

Edcarlos D. Silva, Jefferson S. Silva. Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5441-5470. doi: 10.3934/dcds.2020234

[12]

Yuxia Guo, Zhongwei Tang. Multi-bump solutions for Schrödinger equation involving critical growth and potential wells. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3393-3415. doi: 10.3934/dcds.2015.35.3393

[13]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[14]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392

[15]

Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009

[16]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2065-2100. doi: 10.3934/cpaa.2021058

[17]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[18]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[19]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[20]

Federica Sani. A biharmonic equation in $\mathbb{R}^4$ involving nonlinearities with critical exponential growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 405-428. doi: 10.3934/cpaa.2013.12.405

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (210)
  • HTML views (69)
  • Cited by (0)

Other articles
by authors

[Back to Top]