-
Previous Article
Long-time asymptotics for the modified complex short pulse equation
- DCDS Home
- This Issue
-
Next Article
Global existence and blow up for systems of nonlinear wave equations related to the weak null condition
Critical gauged Schrödinger equations in $ \mathbb{R}^2 $ with vanishing potentials
1. | Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China |
2. | Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore, Via della Garzetta 48, 25133, Brescia, Italy |
$ \left\{ \begin{array}{l} -\Delta u+V(|x|) u+\lambda\bigg(\int_{|x|}^\infty \frac{h_u(s)}{s}u^2(s)ds+\frac{h_u^2(|x|)}{|x|^2} \bigg)u\\\qquad \, = K(|x|)f(u)+\mu g(|x|)|u|^{q-2}u, \\ u(x) = u(|x|) \; {\rm{in}}\; \mathbb{R}^2, \\\\ \end{array} \right. $ |
$ h_u(s) = \int_0^s\frac{r}{2}u^2(r)dr $ |
$ \lambda,\mu>0 $ |
$ V(|x|) $ |
$ K(|x|) $ |
$ f $ |
$ g(x) = g(|x|) $ |
$ 1\leq q<2 $ |
$ f $ |
References:
[1] |
Ad imurthi and S. L. Yadava,
Multiplicity results for semilinear elliptic equations in bounded domain of $\mathbb{R}^{2}$ involving critical exponent, Ann. Sc. Norm. Super. Pisa, 17 (1990), 481-504.
|
[2] |
Ad imurthi and Y. Yang,
An interpolation of Hardy inequality and Trudinger-Moser inequality in $ \mathbb{R}^N$ and its applications, Int. Math. Res. Not. IMRN, 2010 (2010), 2394-2426.
doi: 10.1093/imrn/rnp194. |
[3] |
F. S. B. Albuquerque, J. L. Carvalho, G. M. Figueiredo and E. S. Medeiros, On a planar non-autonomous Schrödinger-Poisson system involving exponential critical growth, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 40, 30 pp.
doi: 10.1007/s00526-020-01902-6. |
[4] |
F. S. B. Albuquerque, M. C. Ferreira and U. B. Severo,
Ground state solutions for a nonlocal equation in $ \mathbb{R}^2$ involving vanishing potentials and exponential critical growth, Milan J. Math., 89 (2021), 263-294.
doi: 10.1007/s00032-021-00334-x. |
[5] |
C. O. Alves, M. A. Souto and M. Montenegro,
Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations, 43 (2012), 537-554.
doi: 10.1007/s00526-011-0422-y. |
[6] |
J. G. Azorero and I. P. Alonso,
Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.
doi: 10.1090/S0002-9947-1991-1083144-2. |
[7] |
A. Azzollini and A. Pomponio, Positive energy static solutions for the Chern-Simons-Schrödinger system under a large-distance fall-off requirement on the gauge potentials, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 165, 30 pp.
doi: 10.1007/s00526-021-02031-4. |
[8] |
H. Berestycki, T. Gallouët and O. Kavian,
Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Sér. I Math., 297 (1983), 307-310.
|
[9] |
H. Berestycki and P. L. Lions,
Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[10] |
H. Berestycki and P. L. Lions,
Nonlinear scalar field equations. Ⅱ. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82 (1983), 347-375.
doi: 10.1007/BF00250556. |
[11] |
L. Bergé, A. de Bouard and J. C. Saut,
Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.
doi: 10.1088/0951-7715/8/2/007. |
[12] |
J. Byeon, H. Huh and J. Seok,
Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.
doi: 10.1016/j.jfa.2012.05.024. |
[13] |
J. Byeon, H. Huh and J. Seok,
On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285-1316.
doi: 10.1016/j.jde.2016.04.004. |
[14] |
D. Cao,
Nontrivial solution of semilinear elliptic equation with critical exponent in $ \mathbb{R}^2$, Commun. Partial Differential Equations, 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[15] |
P. Cunha, P. d'Avenia, A. Pomponio and G. Siciliano,
A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differential Equations Appl., 22 (2015), 1831-1850.
doi: 10.1007/s00030-015-0346-x. |
[16] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf,
Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[17] |
M. de Souza and J. M. do Ó,
A sharp Trudinger-Moser type inequality in $ \mathbb{R}^2$, Trans. Amer. Math. Soc., 366 (2014), 4513-4549.
doi: 10.1090/S0002-9947-2014-05811-X. |
[18] |
Y. Deng, S. Peng and W. Shuai,
Nodal standing waves for a gauged nonlinear Schrödinger equation in $ \mathbb{R}^2$, J. Differential Equations, 264 (2018), 4006-4035.
doi: 10.1016/j.jde.2017.12.003. |
[19] |
M. Dong and G. Lu, Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partical Differential Equations, 55 (2016), Art. 88, 26 pp.
doi: 10.1007/s00526-016-1014-7. |
[20] |
J. M. do Ó,
N-Laplacian equations in $ \mathbb{R}^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.
doi: 10.1155/S1085337597000419. |
[21] |
J. M. do Ó, E. Medeiros and U. Severo,
A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.
doi: 10.1016/j.jmaa.2008.03.074. |
[22] |
J. M. do Ó, E. Medeiros and U. Severo,
On a quasilinear nonhomogeneous elliptic equation with critical growth in $ \mathbb{R}^n$, J. Differential Equations, 246 (2009), 1363-1386.
doi: 10.1016/j.jde.2008.11.020. |
[23] |
G. Dunne, Self-Dual Chern-Simons Theories, Springer, 1995.
doi: 10.1007/978-3-540-44777-1. |
[24] |
I. Ekeland,
Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474.
doi: 10.1090/S0273-0979-1979-14595-6. |
[25] |
H. Huh,
Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974.
doi: 10.1088/0951-7715/22/5/003. |
[26] |
R. Jackiw and S. Pi,
Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.
doi: 10.1103/PhysRevD.42.3500. |
[27] |
R. Jackiw and S. Pi,
Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1-40.
doi: 10.1143/PTPS.107.1. |
[28] |
C. Ji and F. Fang,
Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 450 (2017), 578-591.
doi: 10.1016/j.jmaa.2017.01.065. |
[29] |
Y. Jiang, A. Pomponio and D. Ruiz, Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Commun. Contemp. Math., 18 (2016), 1550074, 20 pp.
doi: 10.1142/S0219199715500741. |
[30] |
R. Kajikiya,
A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.
doi: 10.1016/j.jfa.2005.04.005. |
[31] |
M. A. Krasnoselski$\mathop {\rm{i}}\limits^ \vee $, Topological Methods in the Theory of Nonlinear Integral Equations, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956. |
[32] |
N. Lam and G. Lu,
Existence and multiplicity of solutions to equations of $N$-Laplacian type with critical exponential growth in $ \mathbb{R}^N$, J. Funct. Anal., 262 (2012), 1132-1165.
doi: 10.1016/j.jfa.2011.10.012. |
[33] |
Y. Li and B. Ruf,
A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^{N}$, Indiana Univ. Math. J., 57 (2008), 451-480.
doi: 10.1512/iumj.2008.57.3137. |
[34] |
P. L. Lions,
The concentration-compactness principle in the calculus of variations. The limit case. Ⅰ, Rev. Mat. Iberoam, 1 (1985), 145-201.
doi: 10.4171/RMI/6. |
[35] |
J. Moser,
A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/1971), 1077-1092.
doi: 10.1512/iumj.1971.20.20101. |
[36] |
S. I. Pohozaev, The Sobolev embedding in the case $pl = n$, In: Proc. Tech. Sci. Conf. on Adv. Sci., Research, 1964–1965; Math. Section, Moscow, (1965), 158–170. |
[37] |
A. Pomponio and D. Ruiz,
A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486.
doi: 10.4171/JEMS/535. |
[38] |
A. Pomponio and D. Ruiz,
Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316.
doi: 10.1007/s00526-014-0749-2. |
[39] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, In: CBMS Regional Conference Series in Mathematics, vol. 65, AMS, Providence RI, 1986.
doi: 10.1090/cbms/065. |
[40] |
B. Ruf,
A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^2$, J. Funct. Anal., 219 (2005), 340-367.
doi: 10.1016/j.jfa.2004.06.013. |
[41] |
W. A. Strauss,
Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162.
doi: 10.1007/BF01626517. |
[42] |
J. Su, Z.-Q. Wang and M. Willem,
Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math., 9 (2007), 571-583.
doi: 10.1142/S021919970700254X. |
[43] |
N. S. Trudinger,
On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484.
doi: 10.1512/iumj.1968.17.17028. |
[44] |
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[45] |
Y. Yang and X. Zhu,
Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two, J. Funct. Anal., 272 (2017), 3347-3374.
doi: 10.1016/j.jfa.2016.12.028. |
show all references
References:
[1] |
Ad imurthi and S. L. Yadava,
Multiplicity results for semilinear elliptic equations in bounded domain of $\mathbb{R}^{2}$ involving critical exponent, Ann. Sc. Norm. Super. Pisa, 17 (1990), 481-504.
|
[2] |
Ad imurthi and Y. Yang,
An interpolation of Hardy inequality and Trudinger-Moser inequality in $ \mathbb{R}^N$ and its applications, Int. Math. Res. Not. IMRN, 2010 (2010), 2394-2426.
doi: 10.1093/imrn/rnp194. |
[3] |
F. S. B. Albuquerque, J. L. Carvalho, G. M. Figueiredo and E. S. Medeiros, On a planar non-autonomous Schrödinger-Poisson system involving exponential critical growth, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 40, 30 pp.
doi: 10.1007/s00526-020-01902-6. |
[4] |
F. S. B. Albuquerque, M. C. Ferreira and U. B. Severo,
Ground state solutions for a nonlocal equation in $ \mathbb{R}^2$ involving vanishing potentials and exponential critical growth, Milan J. Math., 89 (2021), 263-294.
doi: 10.1007/s00032-021-00334-x. |
[5] |
C. O. Alves, M. A. Souto and M. Montenegro,
Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations, 43 (2012), 537-554.
doi: 10.1007/s00526-011-0422-y. |
[6] |
J. G. Azorero and I. P. Alonso,
Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.
doi: 10.1090/S0002-9947-1991-1083144-2. |
[7] |
A. Azzollini and A. Pomponio, Positive energy static solutions for the Chern-Simons-Schrödinger system under a large-distance fall-off requirement on the gauge potentials, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 165, 30 pp.
doi: 10.1007/s00526-021-02031-4. |
[8] |
H. Berestycki, T. Gallouët and O. Kavian,
Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Sér. I Math., 297 (1983), 307-310.
|
[9] |
H. Berestycki and P. L. Lions,
Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[10] |
H. Berestycki and P. L. Lions,
Nonlinear scalar field equations. Ⅱ. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82 (1983), 347-375.
doi: 10.1007/BF00250556. |
[11] |
L. Bergé, A. de Bouard and J. C. Saut,
Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.
doi: 10.1088/0951-7715/8/2/007. |
[12] |
J. Byeon, H. Huh and J. Seok,
Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.
doi: 10.1016/j.jfa.2012.05.024. |
[13] |
J. Byeon, H. Huh and J. Seok,
On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285-1316.
doi: 10.1016/j.jde.2016.04.004. |
[14] |
D. Cao,
Nontrivial solution of semilinear elliptic equation with critical exponent in $ \mathbb{R}^2$, Commun. Partial Differential Equations, 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[15] |
P. Cunha, P. d'Avenia, A. Pomponio and G. Siciliano,
A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differential Equations Appl., 22 (2015), 1831-1850.
doi: 10.1007/s00030-015-0346-x. |
[16] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf,
Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[17] |
M. de Souza and J. M. do Ó,
A sharp Trudinger-Moser type inequality in $ \mathbb{R}^2$, Trans. Amer. Math. Soc., 366 (2014), 4513-4549.
doi: 10.1090/S0002-9947-2014-05811-X. |
[18] |
Y. Deng, S. Peng and W. Shuai,
Nodal standing waves for a gauged nonlinear Schrödinger equation in $ \mathbb{R}^2$, J. Differential Equations, 264 (2018), 4006-4035.
doi: 10.1016/j.jde.2017.12.003. |
[19] |
M. Dong and G. Lu, Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partical Differential Equations, 55 (2016), Art. 88, 26 pp.
doi: 10.1007/s00526-016-1014-7. |
[20] |
J. M. do Ó,
N-Laplacian equations in $ \mathbb{R}^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.
doi: 10.1155/S1085337597000419. |
[21] |
J. M. do Ó, E. Medeiros and U. Severo,
A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.
doi: 10.1016/j.jmaa.2008.03.074. |
[22] |
J. M. do Ó, E. Medeiros and U. Severo,
On a quasilinear nonhomogeneous elliptic equation with critical growth in $ \mathbb{R}^n$, J. Differential Equations, 246 (2009), 1363-1386.
doi: 10.1016/j.jde.2008.11.020. |
[23] |
G. Dunne, Self-Dual Chern-Simons Theories, Springer, 1995.
doi: 10.1007/978-3-540-44777-1. |
[24] |
I. Ekeland,
Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474.
doi: 10.1090/S0273-0979-1979-14595-6. |
[25] |
H. Huh,
Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974.
doi: 10.1088/0951-7715/22/5/003. |
[26] |
R. Jackiw and S. Pi,
Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.
doi: 10.1103/PhysRevD.42.3500. |
[27] |
R. Jackiw and S. Pi,
Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1-40.
doi: 10.1143/PTPS.107.1. |
[28] |
C. Ji and F. Fang,
Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 450 (2017), 578-591.
doi: 10.1016/j.jmaa.2017.01.065. |
[29] |
Y. Jiang, A. Pomponio and D. Ruiz, Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Commun. Contemp. Math., 18 (2016), 1550074, 20 pp.
doi: 10.1142/S0219199715500741. |
[30] |
R. Kajikiya,
A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.
doi: 10.1016/j.jfa.2005.04.005. |
[31] |
M. A. Krasnoselski$\mathop {\rm{i}}\limits^ \vee $, Topological Methods in the Theory of Nonlinear Integral Equations, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956. |
[32] |
N. Lam and G. Lu,
Existence and multiplicity of solutions to equations of $N$-Laplacian type with critical exponential growth in $ \mathbb{R}^N$, J. Funct. Anal., 262 (2012), 1132-1165.
doi: 10.1016/j.jfa.2011.10.012. |
[33] |
Y. Li and B. Ruf,
A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^{N}$, Indiana Univ. Math. J., 57 (2008), 451-480.
doi: 10.1512/iumj.2008.57.3137. |
[34] |
P. L. Lions,
The concentration-compactness principle in the calculus of variations. The limit case. Ⅰ, Rev. Mat. Iberoam, 1 (1985), 145-201.
doi: 10.4171/RMI/6. |
[35] |
J. Moser,
A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/1971), 1077-1092.
doi: 10.1512/iumj.1971.20.20101. |
[36] |
S. I. Pohozaev, The Sobolev embedding in the case $pl = n$, In: Proc. Tech. Sci. Conf. on Adv. Sci., Research, 1964–1965; Math. Section, Moscow, (1965), 158–170. |
[37] |
A. Pomponio and D. Ruiz,
A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486.
doi: 10.4171/JEMS/535. |
[38] |
A. Pomponio and D. Ruiz,
Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316.
doi: 10.1007/s00526-014-0749-2. |
[39] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, In: CBMS Regional Conference Series in Mathematics, vol. 65, AMS, Providence RI, 1986.
doi: 10.1090/cbms/065. |
[40] |
B. Ruf,
A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^2$, J. Funct. Anal., 219 (2005), 340-367.
doi: 10.1016/j.jfa.2004.06.013. |
[41] |
W. A. Strauss,
Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162.
doi: 10.1007/BF01626517. |
[42] |
J. Su, Z.-Q. Wang and M. Willem,
Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math., 9 (2007), 571-583.
doi: 10.1142/S021919970700254X. |
[43] |
N. S. Trudinger,
On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484.
doi: 10.1512/iumj.1968.17.17028. |
[44] |
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[45] |
Y. Yang and X. Zhu,
Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two, J. Funct. Anal., 272 (2017), 3347-3374.
doi: 10.1016/j.jfa.2016.12.028. |
[1] |
Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235 |
[2] |
Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3971-3989. doi: 10.3934/dcdsb.2021214 |
[3] |
Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921 |
[4] |
Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273 |
[5] |
Caixia Chen, Aixia Qian. Multiple positive solutions for the Schrödinger-Poisson equation with critical growth. Mathematical Foundations of Computing, 2022, 5 (2) : 113-128. doi: 10.3934/mfc.2021036 |
[6] |
Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure and Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237 |
[7] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[8] |
Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723 |
[9] |
Eduard Toon, Pedro Ubilla. Existence of positive solutions of Schrödinger equations with vanishing potentials. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5831-5843. doi: 10.3934/dcds.2020248 |
[10] |
Juan Arratia, Denilson Pereira, Pedro Ubilla. Elliptic systems involving Schrödinger operators with vanishing potentials. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1369-1401. doi: 10.3934/dcds.2021156 |
[11] |
Edcarlos D. Silva, Jefferson S. Silva. Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5441-5470. doi: 10.3934/dcds.2020234 |
[12] |
Yuxia Guo, Zhongwei Tang. Multi-bump solutions for Schrödinger equation involving critical growth and potential wells. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3393-3415. doi: 10.3934/dcds.2015.35.3393 |
[13] |
Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168 |
[14] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392 |
[15] |
Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009 |
[16] |
Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2065-2100. doi: 10.3934/cpaa.2021058 |
[17] |
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 |
[18] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807 |
[19] |
Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99 |
[20] |
Federica Sani. A biharmonic equation in $\mathbb{R}^4$ involving nonlinearities with critical exponential growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 405-428. doi: 10.3934/cpaa.2013.12.405 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]