doi: 10.3934/dcds.2022075
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Controlled boundary explosions: Dynamics after blow-up for some semilinear problems with global controls

1. 

Dpto. de Matemática Aplicada, ETS de Arquitectura. Universidad Politécnica de Madrid. 28040 Madrid, Spain

2. 

Instituto Matemático Interdisciplinar (IMI), Dpto. de Análisis Matemático y Matemática Aplicada, Universidad Complutense de Madrid. 28040 Madrid, Spain

3. 

Cunef, 28040 Madrid, Spain

*Corresponding author: J. I. Díaz

Dedicated to Juan Luis Vázquez on occasion of his 75th birthday

Received  January 2022 Revised  May 2022 Early access June 2022

Fund Project: The research of A. C. Casal, G. Díaz and J. I. Díaz was partially supported by the project ref. PID2020-112517GB-I00 of the Agencia Estatal de Investigación (Spain)

The main goal of this paper is to show that the blow up phenomenon (the explosion of the $ {{\rm{L}}}^{\infty } $-norm) of the solutions of several classes of evolution problems can be controlled by means of suitable global controls $ \alpha (t) $ ($ i.e. $ only dependent on time) in such a way that the corresponding solution be well defined (as element of $ {{\rm{L}}}_{loc}^{1}(0,+\infty : {{\rm{X}}}) $, for some functional space $ {{\rm{X}}} $) after the explosion time. We start by considering the case of an ordinary differential equation with a superlinear term and show that the controlled explosion property holds by using a delayed control (built through the solution of the problem and by generalizing the nonlinear variation of constants formula, due to V. M. Alekseev in 1961, to the case of neutral delayed equations (since the control is only in the space $ {{\rm{W}}}_{loc}^{-1,q\prime }(0,+\infty : \mathbb{R} ) $, for some $ q>1 $)$ . $ We apply those arguments to the case of an evolution semilinear problem in which the differential equation is a semilinear elliptic equation with a superlinear absorption and the boundary condition is dynamic and involves a forcing superlinear term giving rise to the blow up phenomenon. We prove that, under a suitable balance between the forcing and the absorption terms, the blow up takes place only on the boundary of the spatial domain which here is assumed to be a ball $ {{\rm{B}}}_{ {{\rm{R}}}} $ and for a constant as initial datum.

Citation: Alfonso Carlos Casal, Gregorio Díaz, Jesús Ildefonso Díaz, José Manuel Vegas. Controlled boundary explosions: Dynamics after blow-up for some semilinear problems with global controls. Discrete and Continuous Dynamical Systems, doi: 10.3934/dcds.2022075
References:
[1]

S. AlarcónG. Díaz and J. M. Rey, Large solutions of elliptic semilinear equations in the borderline case. An exhaustive and intrinsic point of view, Journal of Mathematical Analysis and Applications, 431 (2015), 365-405.  doi: 10.1016/j.jmaa.2015.05.068.

[2]

V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations (Russian), Vestnik Moskov Univ. Ser. I Mat. Meh., 2 (1961), 28-36. 

[3]

H. Amann and M. Fila, A Fujita-type theorem for the Laplace equation with a dynamical boundary condition, Acta Math. Univ. Comenian., 66 (1997), 321-328. 

[4]

H. Amann and P. Quittner, Optimal control problems governed by semilinear parabolic equations with low regularity data, Adv. Differ. Equ., 11, (2006) 1–33.

[5]

J. M. Arrieta, On boundedness of solutions of reaction-diffusion equations with nonlinear boundary equations, Proc. Amer. Math. Soc., 136 (2008), 151-160.  doi: 10.1090/S0002-9939-07-08980-0.

[6]

K. Le Balc'h, Global null-controllability and nonnegative-controllability of slightly superlinear heat equations, J. Math. Pures Appl., 9 (2020), 103-139.  doi: 10.1016/j.matpur.2019.10.009.

[7]

C. Bandle, Asymptotic behavior of large solutions of elliptic equations, Annals of University of Craiova, Math. Comp. Sci. Ser., 32 (2005), 1-8. 

[8]

C. Bandle and G. Díaz et J. I. Díaz, Solutions d'équations de réaction-diffusion non linéaires explosant au bord parabolique, C. R. Acad Sci Paris, 318 (1994), 455-460. 

[9]

C. Bandle, J. von Below and W. Reichel, Parabolic problems with dynamical boundary conditions: Eigenvalue expansions and blow up, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni 2006, 35–67. doi: 10.4171/RLM/453.

[10]

P. Baras and L. Cohen, Complete blow-up after Tmax for the solution of a semilinear heat equation, J. Funct. Anal., 71 (1987), 142-174.  doi: 10.1016/0022-1236(87)90020-6.

[11]

I. Bejenaru, J. I. Díaz and I. I. Vrabie, An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamical boundary conditions, Electr. J. Diff. Eqns., (2001), No. 50, 19 pp.

[12]

H. Brezis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Mathematical Studies, Amsterdam, 1973.

[13]

H. BrezisTh. CazenaveY. Martel and A. Ramiandrisoa, Blow up for $u_{t}-\Delta u=g(u)$ revisited, Adv. Differ. Equat., 1 (1996), 73-90. 

[14]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional laplacian, Commun. Partial Differential Equations, 32 (2007) 1245–1260. doi: 10.1080/03605300600987306.

[15]

A. C. CasalJ. I. Díaz and J. M. Vegas, Blow-up in some ordinary and partial differential equations with time-delay, Dynam. Systems Appl., 18 (2009), 29-46. 

[16]

A. C. Casal, J. I. Díaz and J. M. Vegas, Controlled explosions of blowing-up trajectories in semilinear problems and a nonlinear variation of constant formula, XXIII Congreso de Ecuaciones Diferenciales y Aplicaciones, XIII Congreso de Matemática Aplicada, Castellón, 9–13 septiembre 2013. e-Proccedings.

[17]

A. C. CasalJ. I. Díaz and J. M. Vegas, Complete recuperation after the blow up time for semilinear problems, AIMS Procceding, 2015 (2015), 223-229.  doi: 10.3934/proc.2015.0223.

[18]

Th. CazenaveY. Martel and L. Zhao, Solutions blowing up on any given compact set for the energy subcritical wave equation, J. Differential Equations, 268 (2020), 680-706.  doi: 10.1016/j.jde.2019.08.030.

[19]

J. M. Coron and E. Trélat, Global steady-state controllability of 1-D semilinear heat equations, SIAM J. Control and Optimization, 43 (2004), 549-569.  doi: 10.1137/S036301290342471X.

[20]

G. DíazJ. I. Díaz and J. Otero, Construction of the maximal solution of Backus' problem in geodesy and geomagnetism, Studia Geophysica et Geodaetica, 55 (2011), 415-440.  doi: 10.1007/s11200-011-0024-3.

[21]

G. Díaz and J. I. Díaz, Stochastic energy balance climate models with Legendre weighted diffusion and a cylindrical Wiener process forcing, Discrete and Continuous Dynamical Systems Series S. doi: 10.3934/dcdss. 2021165.

[22]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Analysis, 20 (1993), 97-125.  doi: 10.1016/0362-546X(93)90012-H.

[23]

J. I. DíazD. Gómez-Castro and J. L. Vázquez., The fractional Schrödinger equation with general nonnegative potentials, The weighted space approach, Nonlinear Analysis, 177 (2018), 325-360.  doi: 10.1016/j.na.2018.05.001.

[24]

J. I. Díaz and J.-L. Lions, Sur la contrôlabilité de problèmes paraboliques avec phenomenes d'explosion, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 173-177.  doi: 10.1016/S0764-4442(98)80083-9.

[25]

J. I. Díaz and J. L. Lions, On the approximate controllability for some explosive parabolic problems, In: Hoffmann, K. -H., et al. (eds. ), Optimal Control of Partial Differential Equations, (Chemnitz, 1998), Internat. Ser. Numer. Math., vol. 133 (1993), Birkhäuser, Basel, 115–132.

[26]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. Henri Poincaré Anal. Non Linèaire, 17 (2000), 583–616. doi: 10.1016/s0294-1449(00)00117-7.

[27]

M. Fila and J. Filo, Blow-up on the boundary: A survey, In Singularities and Differential Equations, Banach Center Publications, volume 33 (1996). Institute of Mathematics, Polish Academy of Sciences, Warszawa, 67–77.

[28]

M. Fila and P. Quittner, Large time behavior of solutions of a semilinear parabolic equation with a nonlinear dynamical boundary condition, in Topics in Nonlinear Analysis: The Herbert Amann Anniversary Volume, (Joachim Escher and Gieri Simonett eds. ), Progress in Nonlinear Differential Equations and Their Applications, Vol. 35 (1999), Birkhauser, 251–272.

[29]

Y. Fu and P. Pucci, On solutions of space-fractional diffusion equations by means of potential wells, Electronic Journal of Qualitative Theory of Differential Equations, 2016, Paper No. 70, 17 pp. doi: 10.14232/ejqtde. 2016.1.70.

[30]

V. A. Galaktionov and J. L. Vázquez, A Stability Technique for Evolution Partial Differential Equations: A Dynamical Systems Approach, Progress in Nonlinear Differential Equations and Their Applications Vol. 56. Birkhauser, Boston, 2003. doi: 10.1007/978-1-4612-2050-3.

[31]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathematics, 2018, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18460-4.

[32]

M. Kirane, Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type, Hokkaido Math. J., 21 (1992), 222-229.  doi: 10.14492/hokmj/1381413677.

[33]

M. KiraneE. Nabana and S. I. Pokhozhaev, The absence of solutions of elliptic systems with dynamic boundary conditions, Differential Equations, 38 (2002), 808-815.  doi: 10.1023/A:1020358228313.

[34] V. Laksmikantham and S. Leela, Differential and Integral Inequalities, Theory and Applications, Vols. I and II, Academic Press, New York, 1969. 
[35]

H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equations with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differential Equations, 16 (1974), 319-334.  doi: 10.1016/0022-0396(74)90018-7.

[36]

J. -L. Lions, Contrôle Des Systêmes Distribués Singuliers, Gauthier-Villars, Bordas, Paris. 1983.

[37]

J. López GómezV. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition, J. Diff. Eq., 92 (1991), 384-401.  doi: 10.1016/0022-0396(91)90056-F.

[38]

F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math., 45 (1992), 263-300.  doi: 10.1002/cpa.3160450303.

[39]

A. Porretta and E. Zuazua, Null controllability of viscous Hamilton-Jacobi equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 301-333.  doi: 10.1016/j.anihpc.2011.11.002.

[40]

P. Quittner and P. Souplet, Superlinear Parabolic Problems, Birkhäuser, Berlin, 2007.

[41]

S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka Journal of Mathematics, 12 (1975), 45–51.

[42]

J. L. Vázquez, The mathematical theories of diffusion, Nonlinear and Fractional Diffusion, Lecture Notes in Mathematics, 2186. Fondazione CIME/CIME Foundation Subseries. Springer, Cham; Fondazione C.I.M.E., Florence, 2017.

[43]

J. L. Vázquez and E. Vitillaro, On the Laplace equation with dynamical boundary conditions of reactive diffusive type, J. Math. Anal. Appl., 354 (2009), 674-688.  doi: 10.1016/j.jmaa.2009.01.023.

[44]

N. Yamazaki, A class of nonlinear evolution equations governed by time-dependent operators of subdifferential type, Hokkaido University Preprint Series in Mathematics, 696 (2005), 1–16.

show all references

References:
[1]

S. AlarcónG. Díaz and J. M. Rey, Large solutions of elliptic semilinear equations in the borderline case. An exhaustive and intrinsic point of view, Journal of Mathematical Analysis and Applications, 431 (2015), 365-405.  doi: 10.1016/j.jmaa.2015.05.068.

[2]

V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations (Russian), Vestnik Moskov Univ. Ser. I Mat. Meh., 2 (1961), 28-36. 

[3]

H. Amann and M. Fila, A Fujita-type theorem for the Laplace equation with a dynamical boundary condition, Acta Math. Univ. Comenian., 66 (1997), 321-328. 

[4]

H. Amann and P. Quittner, Optimal control problems governed by semilinear parabolic equations with low regularity data, Adv. Differ. Equ., 11, (2006) 1–33.

[5]

J. M. Arrieta, On boundedness of solutions of reaction-diffusion equations with nonlinear boundary equations, Proc. Amer. Math. Soc., 136 (2008), 151-160.  doi: 10.1090/S0002-9939-07-08980-0.

[6]

K. Le Balc'h, Global null-controllability and nonnegative-controllability of slightly superlinear heat equations, J. Math. Pures Appl., 9 (2020), 103-139.  doi: 10.1016/j.matpur.2019.10.009.

[7]

C. Bandle, Asymptotic behavior of large solutions of elliptic equations, Annals of University of Craiova, Math. Comp. Sci. Ser., 32 (2005), 1-8. 

[8]

C. Bandle and G. Díaz et J. I. Díaz, Solutions d'équations de réaction-diffusion non linéaires explosant au bord parabolique, C. R. Acad Sci Paris, 318 (1994), 455-460. 

[9]

C. Bandle, J. von Below and W. Reichel, Parabolic problems with dynamical boundary conditions: Eigenvalue expansions and blow up, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni 2006, 35–67. doi: 10.4171/RLM/453.

[10]

P. Baras and L. Cohen, Complete blow-up after Tmax for the solution of a semilinear heat equation, J. Funct. Anal., 71 (1987), 142-174.  doi: 10.1016/0022-1236(87)90020-6.

[11]

I. Bejenaru, J. I. Díaz and I. I. Vrabie, An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamical boundary conditions, Electr. J. Diff. Eqns., (2001), No. 50, 19 pp.

[12]

H. Brezis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Mathematical Studies, Amsterdam, 1973.

[13]

H. BrezisTh. CazenaveY. Martel and A. Ramiandrisoa, Blow up for $u_{t}-\Delta u=g(u)$ revisited, Adv. Differ. Equat., 1 (1996), 73-90. 

[14]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional laplacian, Commun. Partial Differential Equations, 32 (2007) 1245–1260. doi: 10.1080/03605300600987306.

[15]

A. C. CasalJ. I. Díaz and J. M. Vegas, Blow-up in some ordinary and partial differential equations with time-delay, Dynam. Systems Appl., 18 (2009), 29-46. 

[16]

A. C. Casal, J. I. Díaz and J. M. Vegas, Controlled explosions of blowing-up trajectories in semilinear problems and a nonlinear variation of constant formula, XXIII Congreso de Ecuaciones Diferenciales y Aplicaciones, XIII Congreso de Matemática Aplicada, Castellón, 9–13 septiembre 2013. e-Proccedings.

[17]

A. C. CasalJ. I. Díaz and J. M. Vegas, Complete recuperation after the blow up time for semilinear problems, AIMS Procceding, 2015 (2015), 223-229.  doi: 10.3934/proc.2015.0223.

[18]

Th. CazenaveY. Martel and L. Zhao, Solutions blowing up on any given compact set for the energy subcritical wave equation, J. Differential Equations, 268 (2020), 680-706.  doi: 10.1016/j.jde.2019.08.030.

[19]

J. M. Coron and E. Trélat, Global steady-state controllability of 1-D semilinear heat equations, SIAM J. Control and Optimization, 43 (2004), 549-569.  doi: 10.1137/S036301290342471X.

[20]

G. DíazJ. I. Díaz and J. Otero, Construction of the maximal solution of Backus' problem in geodesy and geomagnetism, Studia Geophysica et Geodaetica, 55 (2011), 415-440.  doi: 10.1007/s11200-011-0024-3.

[21]

G. Díaz and J. I. Díaz, Stochastic energy balance climate models with Legendre weighted diffusion and a cylindrical Wiener process forcing, Discrete and Continuous Dynamical Systems Series S. doi: 10.3934/dcdss. 2021165.

[22]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Analysis, 20 (1993), 97-125.  doi: 10.1016/0362-546X(93)90012-H.

[23]

J. I. DíazD. Gómez-Castro and J. L. Vázquez., The fractional Schrödinger equation with general nonnegative potentials, The weighted space approach, Nonlinear Analysis, 177 (2018), 325-360.  doi: 10.1016/j.na.2018.05.001.

[24]

J. I. Díaz and J.-L. Lions, Sur la contrôlabilité de problèmes paraboliques avec phenomenes d'explosion, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 173-177.  doi: 10.1016/S0764-4442(98)80083-9.

[25]

J. I. Díaz and J. L. Lions, On the approximate controllability for some explosive parabolic problems, In: Hoffmann, K. -H., et al. (eds. ), Optimal Control of Partial Differential Equations, (Chemnitz, 1998), Internat. Ser. Numer. Math., vol. 133 (1993), Birkhäuser, Basel, 115–132.

[26]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. Henri Poincaré Anal. Non Linèaire, 17 (2000), 583–616. doi: 10.1016/s0294-1449(00)00117-7.

[27]

M. Fila and J. Filo, Blow-up on the boundary: A survey, In Singularities and Differential Equations, Banach Center Publications, volume 33 (1996). Institute of Mathematics, Polish Academy of Sciences, Warszawa, 67–77.

[28]

M. Fila and P. Quittner, Large time behavior of solutions of a semilinear parabolic equation with a nonlinear dynamical boundary condition, in Topics in Nonlinear Analysis: The Herbert Amann Anniversary Volume, (Joachim Escher and Gieri Simonett eds. ), Progress in Nonlinear Differential Equations and Their Applications, Vol. 35 (1999), Birkhauser, 251–272.

[29]

Y. Fu and P. Pucci, On solutions of space-fractional diffusion equations by means of potential wells, Electronic Journal of Qualitative Theory of Differential Equations, 2016, Paper No. 70, 17 pp. doi: 10.14232/ejqtde. 2016.1.70.

[30]

V. A. Galaktionov and J. L. Vázquez, A Stability Technique for Evolution Partial Differential Equations: A Dynamical Systems Approach, Progress in Nonlinear Differential Equations and Their Applications Vol. 56. Birkhauser, Boston, 2003. doi: 10.1007/978-1-4612-2050-3.

[31]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathematics, 2018, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18460-4.

[32]

M. Kirane, Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type, Hokkaido Math. J., 21 (1992), 222-229.  doi: 10.14492/hokmj/1381413677.

[33]

M. KiraneE. Nabana and S. I. Pokhozhaev, The absence of solutions of elliptic systems with dynamic boundary conditions, Differential Equations, 38 (2002), 808-815.  doi: 10.1023/A:1020358228313.

[34] V. Laksmikantham and S. Leela, Differential and Integral Inequalities, Theory and Applications, Vols. I and II, Academic Press, New York, 1969. 
[35]

H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equations with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differential Equations, 16 (1974), 319-334.  doi: 10.1016/0022-0396(74)90018-7.

[36]

J. -L. Lions, Contrôle Des Systêmes Distribués Singuliers, Gauthier-Villars, Bordas, Paris. 1983.

[37]

J. López GómezV. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition, J. Diff. Eq., 92 (1991), 384-401.  doi: 10.1016/0022-0396(91)90056-F.

[38]

F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math., 45 (1992), 263-300.  doi: 10.1002/cpa.3160450303.

[39]

A. Porretta and E. Zuazua, Null controllability of viscous Hamilton-Jacobi equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 301-333.  doi: 10.1016/j.anihpc.2011.11.002.

[40]

P. Quittner and P. Souplet, Superlinear Parabolic Problems, Birkhäuser, Berlin, 2007.

[41]

S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka Journal of Mathematics, 12 (1975), 45–51.

[42]

J. L. Vázquez, The mathematical theories of diffusion, Nonlinear and Fractional Diffusion, Lecture Notes in Mathematics, 2186. Fondazione CIME/CIME Foundation Subseries. Springer, Cham; Fondazione C.I.M.E., Florence, 2017.

[43]

J. L. Vázquez and E. Vitillaro, On the Laplace equation with dynamical boundary conditions of reactive diffusive type, J. Math. Anal. Appl., 354 (2009), 674-688.  doi: 10.1016/j.jmaa.2009.01.023.

[44]

N. Yamazaki, A class of nonlinear evolution equations governed by time-dependent operators of subdifferential type, Hokkaido University Preprint Series in Mathematics, 696 (2005), 1–16.

Figure 1.  Illustrative example of the control $ \alpha(t) $ and the effective bang-bang control if $ f(s)=s^{p},p>2 $

The blowing up solution without control $ u^{0}(t) $ and the controlled solution $ u^{\alpha}(t) $ defined in the whole $ [0,+\infty[ $

Figure 2.  Spatial profile of the subsolution $ \underline{ {{\rm{U}}}} $ and time profiles of the solution at $ r= {{\rm{R}}} $ for some values of $ p $
[1]

Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381

[2]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[3]

N. Arada, J.-P. Raymond. Time optimal problems with Dirichlet boundary controls. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1549-1570. doi: 10.3934/dcds.2003.9.1549

[4]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure and Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

[5]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[6]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic and Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

[7]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[8]

Jason Metcalfe, Jacob Perry. Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions. Communications on Pure and Applied Analysis, 2012, 11 (2) : 547-556. doi: 10.3934/cpaa.2012.11.547

[9]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[10]

Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273

[11]

Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024

[12]

Sandra Lucente. Large data solutions for semilinear higher order equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3525-3533. doi: 10.3934/dcdss.2020247

[13]

Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026

[14]

Xavier Fernández-Real, Xavier Ros-Oton. On global solutions to semilinear elliptic equations related to the one-phase free boundary problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6945-6959. doi: 10.3934/dcds.2019238

[15]

Boumedièene Chentouf, Sabeur Mansouri. Boundary stabilization of a flexible structure with dynamic boundary conditions via one time-dependent delayed boundary control. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1127-1141. doi: 10.3934/dcdss.2021090

[16]

Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117

[17]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[18]

Jinxing Liu, Xiongrui Wang, Jun Zhou, Xu Liu. Dynamics of solutions to a semilinear plate equation with memory. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3911-3936. doi: 10.3934/cpaa.2021137

[19]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[20]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (89)
  • HTML views (52)
  • Cited by (0)

[Back to Top]