-
Previous Article
An optimization problem in heat conduction with volume constraint and double obstacles
- DCDS Home
- This Issue
-
Next Article
Iterative roots of type $ \mathcal {T}_2 $
Boundary concentrations on segments for a Neumann Ambrosetti-Prodi problem
1. | School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
2. | School of Mathematics and Information Science, Guangzhou University, Guangzhou 510405, China |
$ \Omega\subset{{\mathbb R}}^2 $ |
$ \begin{equation*} \left\{\begin{array}{l} -\Delta u = \left\vert{u}\right\vert^p-\sigma \quad {\mbox {in}} \ \Omega,\\ {\partial u \over \partial \nu} = 0 \quad {\mbox {on}} \ \partial \Omega. \end{array} \right. \end{equation*} $ |
$ p>2 $ |
$ \sigma>0 $ |
$ \nu $ |
$ \partial \Omega $ |
References:
[1] |
H. Amann and P. Hess,
A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburg Sect.A, 84 (1979), 145-151.
doi: 10.1017/S0308210500017017. |
[2] |
A. Ambrosetti and G. Prodi,
On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., 93 (1972), 231-246.
doi: 10.1007/BF02412022. |
[3] |
W. Ao, H. Chan and J. Wei,
Boundary concentrations on segments for the Lin-Ni-Takagi problem, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 653-696.
|
[4] |
W. Ao, M. Musso and J. Wei,
On spikes concentrating on line-segments to a semilinear Neumann problem, J. Differential Equations, 251 (2011), 881-901.
|
[5] |
W. Ao, M. Musso and J. Wei,
Triple junction solutions for a singularly perturbed Neumann problem, SIAM J. Math. Anal., 43 (2011), 2519-2541.
|
[6] |
W. Ao, J. Wei and J. Zeng,
An optimal bound on the number of interior spike solutions for the Lin-Ni-Takagi problem, J. Funct. Anal., 265 (2013), 1324-1356.
doi: 10.1016/j.jfa.2013.06.016. |
[7] |
I. Bendahou, Z. Khemiri and F. Mahmoudi,
On spikes concentrating on lines for a Neumann superlinear Ambrosetti-Prodi type problem, Discrete Contin. Dyn. Syst., 40 (2020), 2367-2391.
doi: 10.3934/dcds.2020118. |
[8] |
H. Berestycki,
Le nombre de solutions de certains problemes semi lineaires elliptiques, J. Func. Anal., 40 (1981), 1-29.
doi: 10.1016/0022-1236(81)90069-0. |
[9] |
H. Berestycki and P. L. Lions,
Sharp existence results for a class of semilinear elliptic problems, Bol. Soc. Bras. Mat., 12 (1981), 9-19.
|
[10] |
M. Berger and E. Podolak,
On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., 24 (1974), 837-846.
doi: 10.1512/iumj.1975.24.24066. |
[11] |
A. Butscher and R. Mazzeo,
CMC hypersurfaces condensing to geodesic segments and rays in Riemannian manifolds, Ann. Sc. Norm. Super. Pisa. Cl. Sci. (5), 11 (2012), 653-706.
|
[12] |
E. N. Dancer,
On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math., 25 (1995), 957-975.
doi: 10.1216/rmjm/1181072198. |
[13] |
E. N. Dancer,
A note on asymptotic uniqueness for some non linearities which change sign, Bull.Aust. Math. Soc., 61 (2000), 305-312.
doi: 10.1017/S0004972700022309. |
[14] |
E. N. Dancer,
On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pure Appl., 57 (1978), 351-366.
|
[15] |
E. N. Dancer and S. Santra,
On the superlinear Lazer-McKenna conjecture: The nonhomogeneous case, Adv. Differential Equations, 12 (2007), 961-993.
|
[16] |
E. N. Dancer and S. Yan,
On the superlinear Lazer-McKenna conjecture, J. Differential Equations, 210 (2005), 317-351.
doi: 10.1016/j.jde.2004.07.017. |
[17] |
E. N. Dancer and S. Yan,
On the superlinear Lazer-McKenna conjecture. Ⅱ, Comm. in Partial Differential Equations, 30 (2005), 1331-1358.
doi: 10.1080/03605300500258865. |
[18] |
B. Gidas, W. M. Ni and L. Nirenberg,
Symmetry or positive solutions or nonlinear elliptic equations in ${{\mathbb R}}^n$, Mathematical Analysis and Applications. Part A, Adv. Math. Suppl, (1981).
|
[19] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30-39.
doi: 10.1007/BF00289234. |
[20] |
C. Gui and J. Wei,
On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math., 52 (2000), 522-538.
doi: 10.4153/CJM-2000-024-x. |
[21] |
C. Gui and J. Wei,
Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differenrial Equations., 158 (1999), 1-27.
doi: 10.1016/S0022-0396(99)80016-3. |
[22] |
C. Gui, J. Wei and M. Winter,
Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincare Anal. Non Lineaire, 17 (2000), 47-82.
doi: 10.1016/s0294-1449(99)00104-3. |
[23] |
P. Hess and B. Ruf,
On a superlinear elliptic boundary value problem, Math. Z., 164 (1978), 9-14.
doi: 10.1007/BF01214785. |
[24] |
L. Hollman and P. J. McKenna,
A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: Some numerical evidence, Commu. Pure Appl. Annl., 10 (2011), 785-802.
|
[25] |
J. L. Kazdan and F. W. Warner,
Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597.
doi: 10.1002/cpa.3160280502. |
[26] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[27] |
Z. Khemiri, F. Mahmoudi and A. Messaoudi, Concentration on submanifolds for an Ambrosetti-Prodi type problem, Calc. Var. Partial Differential Equations, 56 (2017), Paper No.19, 40 pp.
doi: 10.1007/s00526-017-1117-9. |
[28] |
M. Kwong and L. Zhang,
Uniqueness of positive solutions of $\Delta u+f(u) = 0$ in an annulus, Differential Integral Equations, 4 (1991), 583-599.
|
[29] |
G. Li, S. Yan and J. Yang,
The Lazer-McKenna conjecture for an elliptic problem with critical growth. Ⅱ, J. Differential Equations, 227 (2006), 301-332.
doi: 10.1016/j.jde.2006.02.011. |
[30] |
F.-H. Lin, W.-M. Ni and J.-C. Wei,
On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60 (2007), 252-281.
doi: 10.1002/cpa.20139. |
[31] |
A. Malchiod and M. Montenegro,
Boundary concentration phenomena for a singularly perturbed ellptic problem, Comm. Pure Appl. Math., 55 (2002), 1507-1508.
doi: 10.1002/cpa.10049. |
[32] |
A. Malchiodi and M. Montenegro,
Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.
doi: 10.1215/S0012-7094-04-12414-5. |
[33] |
A. Malchiodi and M. Montenegro,
Boundary layers of arbitrary dimension for a singularly perturbed Neumann problem, Mat. Contemp., 27 (2004), 117-146.
|
[34] |
B. B. Manna and S. Santra,
On the Hollman McKenna conjecture: Interior concentration near curves, Discrete Contin. Dyn. Syst., 36 (2016), 5595-5626.
doi: 10.3934/dcds.2016046. |
[35] |
J. Mawhin,
The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc. (JEMS), 8 (2006), 375-388.
doi: 10.4171/JEMS/58. |
[36] |
J. Mawhin,
Ambrosetti-Prodi type results in nonlinear boundary value problems, Differential Equations and Mathematical Physics, Lecture Notes in Math., 1285 (1987), 290-313.
doi: 10.1007/BFb0080609. |
[37] |
J. Wei,
On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations, 134 (1997), 104-133.
doi: 10.1006/jdeq.1996.3218. |
[38] |
J. Wei and M. Winter,
Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 459-492.
doi: 10.1016/s0294-1449(98)80031-0. |
[39] |
J. Wei and J. Yang,
Concentration on lines for a singularly perturbed Neumann problem in two-dimensional domains, Indiana Univ. Math. J., 56 (2007), 3025-3073.
doi: 10.1512/iumj.2007.56.3133. |
[40] |
J. Wei and J. Yang,
Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain, Discrete Contin. Dyn. Syst., 22 (2008), 465-508.
doi: 10.3934/dcds.2008.22.465. |
show all references
References:
[1] |
H. Amann and P. Hess,
A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburg Sect.A, 84 (1979), 145-151.
doi: 10.1017/S0308210500017017. |
[2] |
A. Ambrosetti and G. Prodi,
On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., 93 (1972), 231-246.
doi: 10.1007/BF02412022. |
[3] |
W. Ao, H. Chan and J. Wei,
Boundary concentrations on segments for the Lin-Ni-Takagi problem, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 653-696.
|
[4] |
W. Ao, M. Musso and J. Wei,
On spikes concentrating on line-segments to a semilinear Neumann problem, J. Differential Equations, 251 (2011), 881-901.
|
[5] |
W. Ao, M. Musso and J. Wei,
Triple junction solutions for a singularly perturbed Neumann problem, SIAM J. Math. Anal., 43 (2011), 2519-2541.
|
[6] |
W. Ao, J. Wei and J. Zeng,
An optimal bound on the number of interior spike solutions for the Lin-Ni-Takagi problem, J. Funct. Anal., 265 (2013), 1324-1356.
doi: 10.1016/j.jfa.2013.06.016. |
[7] |
I. Bendahou, Z. Khemiri and F. Mahmoudi,
On spikes concentrating on lines for a Neumann superlinear Ambrosetti-Prodi type problem, Discrete Contin. Dyn. Syst., 40 (2020), 2367-2391.
doi: 10.3934/dcds.2020118. |
[8] |
H. Berestycki,
Le nombre de solutions de certains problemes semi lineaires elliptiques, J. Func. Anal., 40 (1981), 1-29.
doi: 10.1016/0022-1236(81)90069-0. |
[9] |
H. Berestycki and P. L. Lions,
Sharp existence results for a class of semilinear elliptic problems, Bol. Soc. Bras. Mat., 12 (1981), 9-19.
|
[10] |
M. Berger and E. Podolak,
On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., 24 (1974), 837-846.
doi: 10.1512/iumj.1975.24.24066. |
[11] |
A. Butscher and R. Mazzeo,
CMC hypersurfaces condensing to geodesic segments and rays in Riemannian manifolds, Ann. Sc. Norm. Super. Pisa. Cl. Sci. (5), 11 (2012), 653-706.
|
[12] |
E. N. Dancer,
On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math., 25 (1995), 957-975.
doi: 10.1216/rmjm/1181072198. |
[13] |
E. N. Dancer,
A note on asymptotic uniqueness for some non linearities which change sign, Bull.Aust. Math. Soc., 61 (2000), 305-312.
doi: 10.1017/S0004972700022309. |
[14] |
E. N. Dancer,
On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pure Appl., 57 (1978), 351-366.
|
[15] |
E. N. Dancer and S. Santra,
On the superlinear Lazer-McKenna conjecture: The nonhomogeneous case, Adv. Differential Equations, 12 (2007), 961-993.
|
[16] |
E. N. Dancer and S. Yan,
On the superlinear Lazer-McKenna conjecture, J. Differential Equations, 210 (2005), 317-351.
doi: 10.1016/j.jde.2004.07.017. |
[17] |
E. N. Dancer and S. Yan,
On the superlinear Lazer-McKenna conjecture. Ⅱ, Comm. in Partial Differential Equations, 30 (2005), 1331-1358.
doi: 10.1080/03605300500258865. |
[18] |
B. Gidas, W. M. Ni and L. Nirenberg,
Symmetry or positive solutions or nonlinear elliptic equations in ${{\mathbb R}}^n$, Mathematical Analysis and Applications. Part A, Adv. Math. Suppl, (1981).
|
[19] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30-39.
doi: 10.1007/BF00289234. |
[20] |
C. Gui and J. Wei,
On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math., 52 (2000), 522-538.
doi: 10.4153/CJM-2000-024-x. |
[21] |
C. Gui and J. Wei,
Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differenrial Equations., 158 (1999), 1-27.
doi: 10.1016/S0022-0396(99)80016-3. |
[22] |
C. Gui, J. Wei and M. Winter,
Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincare Anal. Non Lineaire, 17 (2000), 47-82.
doi: 10.1016/s0294-1449(99)00104-3. |
[23] |
P. Hess and B. Ruf,
On a superlinear elliptic boundary value problem, Math. Z., 164 (1978), 9-14.
doi: 10.1007/BF01214785. |
[24] |
L. Hollman and P. J. McKenna,
A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: Some numerical evidence, Commu. Pure Appl. Annl., 10 (2011), 785-802.
|
[25] |
J. L. Kazdan and F. W. Warner,
Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597.
doi: 10.1002/cpa.3160280502. |
[26] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[27] |
Z. Khemiri, F. Mahmoudi and A. Messaoudi, Concentration on submanifolds for an Ambrosetti-Prodi type problem, Calc. Var. Partial Differential Equations, 56 (2017), Paper No.19, 40 pp.
doi: 10.1007/s00526-017-1117-9. |
[28] |
M. Kwong and L. Zhang,
Uniqueness of positive solutions of $\Delta u+f(u) = 0$ in an annulus, Differential Integral Equations, 4 (1991), 583-599.
|
[29] |
G. Li, S. Yan and J. Yang,
The Lazer-McKenna conjecture for an elliptic problem with critical growth. Ⅱ, J. Differential Equations, 227 (2006), 301-332.
doi: 10.1016/j.jde.2006.02.011. |
[30] |
F.-H. Lin, W.-M. Ni and J.-C. Wei,
On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60 (2007), 252-281.
doi: 10.1002/cpa.20139. |
[31] |
A. Malchiod and M. Montenegro,
Boundary concentration phenomena for a singularly perturbed ellptic problem, Comm. Pure Appl. Math., 55 (2002), 1507-1508.
doi: 10.1002/cpa.10049. |
[32] |
A. Malchiodi and M. Montenegro,
Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.
doi: 10.1215/S0012-7094-04-12414-5. |
[33] |
A. Malchiodi and M. Montenegro,
Boundary layers of arbitrary dimension for a singularly perturbed Neumann problem, Mat. Contemp., 27 (2004), 117-146.
|
[34] |
B. B. Manna and S. Santra,
On the Hollman McKenna conjecture: Interior concentration near curves, Discrete Contin. Dyn. Syst., 36 (2016), 5595-5626.
doi: 10.3934/dcds.2016046. |
[35] |
J. Mawhin,
The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc. (JEMS), 8 (2006), 375-388.
doi: 10.4171/JEMS/58. |
[36] |
J. Mawhin,
Ambrosetti-Prodi type results in nonlinear boundary value problems, Differential Equations and Mathematical Physics, Lecture Notes in Math., 1285 (1987), 290-313.
doi: 10.1007/BFb0080609. |
[37] |
J. Wei,
On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations, 134 (1997), 104-133.
doi: 10.1006/jdeq.1996.3218. |
[38] |
J. Wei and M. Winter,
Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 459-492.
doi: 10.1016/s0294-1449(98)80031-0. |
[39] |
J. Wei and J. Yang,
Concentration on lines for a singularly perturbed Neumann problem in two-dimensional domains, Indiana Univ. Math. J., 56 (2007), 3025-3073.
doi: 10.1512/iumj.2007.56.3133. |
[40] |
J. Wei and J. Yang,
Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain, Discrete Contin. Dyn. Syst., 22 (2008), 465-508.
doi: 10.3934/dcds.2008.22.465. |
[1] |
Imene Bendahou, Zied Khemiri, Fethi Mahmoudi. On spikes concentrating on lines for a Neumann superlinear Ambrosetti-Prodi type problem. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2367-2391. doi: 10.3934/dcds.2020118 |
[2] |
Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201 |
[3] |
Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739 |
[4] |
F. R. Pereira. Multiple solutions for a class of Ambrosetti-Prodi type problems for systems involving critical Sobolev exponents. Communications on Pure and Applied Analysis, 2008, 7 (2) : 355-372. doi: 10.3934/cpaa.2008.7.355 |
[5] |
Elisa Sovrano. Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 345-355. doi: 10.3934/dcdss.2018019 |
[6] |
Vincenzo Ambrosio. Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 781-815. doi: 10.3934/dcds.2020062 |
[7] |
Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4487-4518. doi: 10.3934/dcds.2019184 |
[8] |
Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. PDE problems with concentrating terms near the boundary. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2147-2195. doi: 10.3934/cpaa.2020095 |
[9] |
Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure and Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391 |
[10] |
Liping Wang, Dong Ye. Concentrating solutions for an anisotropic elliptic problem with large exponent. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3771-3797. doi: 10.3934/dcds.2015.35.3771 |
[11] |
Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Boundary feedback as a singular limit of damped hyperbolic problems with terms concentrating at the boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5125-5147. doi: 10.3934/dcds.2019208 |
[12] |
José M. Arrieta, Ariadne Nogueira, Marcone C. Pereira. Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4217-4246. doi: 10.3934/dcdsb.2019079 |
[13] |
Vincenzo Ambrosio. Periodic solutions for a superlinear fractional problem without the Ambrosetti-Rabinowitz condition. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2265-2284. doi: 10.3934/dcds.2017099 |
[14] |
Long Wei. Concentrating phenomena in some elliptic Neumann problem: Asymptotic behavior of solutions. Communications on Pure and Applied Analysis, 2008, 7 (4) : 925-946. doi: 10.3934/cpaa.2008.7.925 |
[15] |
Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control and Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015 |
[16] |
Dimitri Breda, Sara Della Schiava. Pseudospectral reduction to compute Lyapunov exponents of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2727-2741. doi: 10.3934/dcdsb.2018092 |
[17] |
Eun Bee Choi, Yun-Ho Kim. Existence of nontrivial solutions for equations of $p(x)$-Laplace type without Ambrosetti and Rabinowitz condition. Conference Publications, 2015, 2015 (special) : 276-286. doi: 10.3934/proc.2015.0276 |
[18] |
Yang Wang. The maximal number of interior peak solutions concentrating on hyperplanes for a singularly perturbed Neumann problem. Communications on Pure and Applied Analysis, 2011, 10 (2) : 731-744. doi: 10.3934/cpaa.2011.10.731 |
[19] |
Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731 |
[20] |
M. Sumon Hossain, M. Monir Uddin. Iterative methods for solving large sparse Lyapunov equations and application to model reduction of index 1 differential-algebraic-equations. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 173-186. doi: 10.3934/naco.2019013 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]