May  2001, 1(2): 183-191. doi: 10.3934/dcdsb.2001.1.183

Competitive exclusion in a discrete-time, size-structured chemostat model

1. 

Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, United States

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St John's, NF A1C 5S7, Canada

Revised  January 2001 Published  February 2001

Competitive exclusion is proved for a discrete-time, size-structured, nonlinear matrix model of m-species competition in the chemostat. The winner is the population able to grow at the lowest nutrient concentration. This extends the results of earlier work of the first author [11] where the case $m = 2$ was treated.
Citation: H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183
[1]

Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3439-3451. doi: 10.3934/dcdsb.2018327

[2]

Dongxue Yan, Xianlong Fu. Long-time behavior of a size-structured population model with diffusion and delayed birth process. Evolution Equations and Control Theory, 2022, 11 (3) : 895-923. doi: 10.3934/eect.2021030

[3]

Manoj Kumar, Syed Abbas. Diffusive size-structured population model with time-varying diffusion rate. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022128

[4]

Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical size-structured population model. Evolution Equations and Control Theory, 2018, 7 (2) : 293-316. doi: 10.3934/eect.2018015

[5]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[6]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[7]

Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891

[8]

Yunfei Lv, Yongzhen Pei, Rong Yuan. On a non-linear size-structured population model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3111-3133. doi: 10.3934/dcdsb.2020053

[9]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[10]

Manoj Kumar, Syed Abbas, Rathinasamy Sakthivel. Analysis of diffusive size-structured population model and optimal birth control. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022036

[11]

Abed Boulouz. A spatially and size-structured population model with unbounded birth process. Discrete and Continuous Dynamical Systems - B, 2022, 27 (12) : 7169-7183. doi: 10.3934/dcdsb.2022038

[12]

Alain Rapaport, Mario Veruete. A new proof of the competitive exclusion principle in the chemostat. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3755-3764. doi: 10.3934/dcdsb.2018314

[13]

Yanxia Dang, Zhipeng Qiu, Xuezhi Li. Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (4) : 901-931. doi: 10.3934/mbe.2017048

[14]

Mustapha Mokhtar-Kharroubi, Quentin Richard. Spectral theory and time asymptotics of size-structured two-phase population models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2969-3004. doi: 10.3934/dcdsb.2020048

[15]

József Z. Farkas, Thomas Hagen. Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1825-1839. doi: 10.3934/cpaa.2009.8.1825

[16]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure and Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[17]

Qihua Huang, Hao Wang. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences & Engineering, 2016, 13 (4) : 697-722. doi: 10.3934/mbe.2016015

[18]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[19]

Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032

[20]

Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1091-1119. doi: 10.3934/dcdsb.2021082

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]