# American Institute of Mathematical Sciences

May  2001, 1(2): 233-256. doi: 10.3934/dcdsb.2001.1.233

## Sufficient conditions for stability of linear differential equations with distributed delay

 1 Département de Mathématiques et de Statistique and Centre de recherches mathématiques, Université de Montréal, Montréal Québec H3C 3J7, Canada 2 Département de Mathématiques et de Statistique Centre de recherches mathématiques and Institut de Génie Biomédical, Université de Montréal, Montréal Québec H3C 3J7, Canada 3 Departments of Physiology, Physics & Mathematics and Centre for Nonlinear Dynamics, McGill University, 3655 Drummond, Montréal, Québec H3G 1Y6, Canada

Received  November 2000 Revised  January 2001 Published  February 2001

We develop conditions for the stability of the constant (steady state) solutions oflinear delay differential equations with distributed delay when only information about the moments of the density of delays is available. We use Laplace transforms to investigate the properties of different distributions of delay. We give a method to parametrically determine the boundary of the region of stability, and sufficient conditions for stability based on the expectation of the distribution of the delay. We also obtain a result based on the skewness of the distribution. These results are illustrated on a recent model of peripheral neutrophil regulatory system which include a distribution of delays. The goal of this paper is to give a simple criterion for the stability when little is known about the distribution of the delay.
Citation: Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233
 [1] Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361 [2] Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855 [3] Elena Braverman, Sergey Zhukovskiy. Absolute and delay-dependent stability of equations with a distributed delay. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2041-2061. doi: 10.3934/dcds.2012.32.2041 [4] Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577 [5] Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35 [6] Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19 [7] Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457 [8] Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295 [9] Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445 [10] Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395 [11] Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727 [12] Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451 [13] Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678 [14] Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169 [15] Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations and Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493 [16] Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268 [17] Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048 [18] A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373 [19] Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521 [20] Teresa Faria, José J. Oliveira. On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2451-2472. doi: 10.3934/dcdsb.2016055

2020 Impact Factor: 1.327