# American Institute of Mathematical Sciences

May  2002, 2(2): 169-184. doi: 10.3934/dcdsb.2002.2.169

## Control of Kalman-like filters using impulse and continuous feedback design

 1 Department of Physical and Mathematical Science, Autonomous University of Nuevo Leon, Apdo postal 144-F, C.P. 66450, San Nicolas de los Garza, Nuevo Leon, Mexico 2 Mathematics Department, University of Nevada, Reno, Reno, NV 89511, United States

Received  October 1999 Revised  August 2001 Published  February 2002

This paper develops the observation control method for refining the Kalman-Bucy estimates, which is based on impulsive modeling of the transition matrix in an observation equation, thus engaging discrete-continuous observations. The impulse observation control generates on-line computable jumps of the estimate variance from its current position towards zero and, as a result, enables us to instantaneously obtain the estimate, whose variance is closer to zero. The filtering equations over impulse-controlled observations are obtained in the Kalman-Bucy filtering problem. The method for feedback design of control of the estimate variance is developed. First, the pure impulse control is used, and, next, the combination of the impulse and continuous control components is employed. The considered examples allow us to compare the properties of these control and filtering methodologies.
Citation: Michael Basin, Mark A. Pinsky. Control of Kalman-like filters using impulse and continuous feedback design. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 169-184. doi: 10.3934/dcdsb.2002.2.169
 [1] Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030 [2] Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004 [3] Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312 [4] Z. G. Feng, Kok Lay Teo, N. U. Ahmed, Yulin Zhao, W. Y. Yan. Optimal fusion of sensor data for Kalman filtering. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 483-503. doi: 10.3934/dcds.2006.14.483 [5] Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017 [6] Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29 (5) : 3429-3447. doi: 10.3934/era.2021046 [7] Alain Bensoussan, John Liu, Jiguang Yuan. Singular control and impulse control: A common approach. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 27-57. doi: 10.3934/dcdsb.2010.13.27 [8] Brahim El Asri. The value of a minimax problem involving impulse control. Journal of Dynamics and Games, 2019, 6 (1) : 1-17. doi: 10.3934/jdg.2019001 [9] Gerasimos G. Rigatos, Efthymia G. Rigatou, Jean Daniel Djida. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1017-1035. doi: 10.3934/mbe.2015.12.1017 [10] Yanqing Hu, Zaiming Liu, Jinbiao Wu. Optimal impulse control of a mean-reverting inventory with quadratic costs. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1685-1700. doi: 10.3934/jimo.2018027 [11] Brahim El Asri, Sehail Mazid. Stochastic impulse control Problem with state and time dependent cost functions. Mathematical Control and Related Fields, 2020, 10 (4) : 855-875. doi: 10.3934/mcrf.2020022 [12] Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631 [13] Magdi S. Mahmoud, Mohammed M. Hussain. Control design of linear systems with saturating actuators: A survey. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 413-435. doi: 10.3934/naco.2012.2.413 [14] Magdi S. Mahmoud, Omar Al-Buraiki. Robust control design of autonomous bicycle kinematics. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 181-191. doi: 10.3934/naco.2014.4.181 [15] K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial and Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133 [16] Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2221-2235. doi: 10.3934/jimo.2021063 [17] Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063 [18] Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197 [19] Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085 [20] Sanling Yuan, Yongli Song, Junhui Li. Oscillations in a plasmid turbidostat model with delayed feedback control. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 893-914. doi: 10.3934/dcdsb.2011.15.893

2021 Impact Factor: 1.497