-
Previous Article
Dynamics of the thermohaline circulation under wind forcing
- DCDS-B Home
- This Issue
-
Next Article
Control of Kalman-like filters using impulse and continuous feedback design
Analysis of upscaling absolute permeability
1. | Applied & Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States |
2. | Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States |
3. | Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States |
[1] |
Kundan Kumar, Tycho van Noorden, Iuliu Sorin Pop. Upscaling of reactive flows in domains with moving oscillating boundaries. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 95-111. doi: 10.3934/dcdss.2014.7.95 |
[2] |
Zhiming Chen, Weibing Deng, Huang Ye. A new upscaling method for the solute transport equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 941-960. doi: 10.3934/dcds.2005.13.941 |
[3] |
Keaton Hamm, Longxiu Huang. Stability of sampling for CUR decompositions. Foundations of Data Science, 2020, 2 (2) : 83-99. doi: 10.3934/fods.2020006 |
[4] |
Alexandre J. Chorin, Fei Lu, Robert N. Miller, Matthias Morzfeld, Xuemin Tu. Sampling, feasibility, and priors in data assimilation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4227-4246. doi: 10.3934/dcds.2016.36.4227 |
[5] |
Shixu Meng. A sampling type method in an electromagnetic waveguide. Inverse Problems and Imaging, 2021, 15 (4) : 745-762. doi: 10.3934/ipi.2021012 |
[6] |
Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139 |
[7] |
Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056 |
[8] |
Leszek Gasiński, Nikolaos S. Papageorgiou. Dirichlet $(p,q)$-equations at resonance. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2037-2060. doi: 10.3934/dcds.2014.34.2037 |
[9] |
D. Bonheure, C. Fabry. A variational approach to resonance for asymmetric oscillators. Communications on Pure and Applied Analysis, 2007, 6 (1) : 163-181. doi: 10.3934/cpaa.2007.6.163 |
[10] |
Philip Korman. Curves of equiharmonic solutions, and problems at resonance. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2847-2860. doi: 10.3934/dcds.2014.34.2847 |
[11] |
Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems and Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709 |
[12] |
Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033 |
[13] |
T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125 |
[14] |
Martin Hanke. Why linear sampling really seems to work. Inverse Problems and Imaging, 2008, 2 (3) : 373-395. doi: 10.3934/ipi.2008.2.373 |
[15] |
Aku Kammonen, Jonas Kiessling, Petr Plecháč, Mattias Sandberg, Anders Szepessy. Adaptive random Fourier features with Metropolis sampling. Foundations of Data Science, 2020, 2 (3) : 309-332. doi: 10.3934/fods.2020014 |
[16] |
Harun Karsli. On multidimensional Urysohn type generalized sampling operators. Mathematical Foundations of Computing, 2021, 4 (4) : 271-280. doi: 10.3934/mfc.2021015 |
[17] |
Shixin Xu, Xingye Yue, Changrong Zhang. Homogenization: In mathematics or physics?. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1575-1590. doi: 10.3934/dcdss.2016064 |
[18] |
Fanghua Lin, Xiaodong Yan. A type of homogenization problem. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 1-30. doi: 10.3934/dcds.2003.9.1 |
[19] |
Grégoire Allaire, Harsha Hutridurga. On the homogenization of multicomponent transport. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2527-2551. doi: 10.3934/dcdsb.2015.20.2527 |
[20] |
Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]