February  2002, 2(1): 35-46. doi: 10.3934/dcdsb.2002.2.35

Simulation of stationary chemical patterns and waves in ionic reactions

1. 

Department of Physical Chemistry, University of Würzburg, D-97074 Würzburg, Germany

Received  August 2001 Revised  October 2001 Published  November 2001

In numerical simulations based on a general model chemical patterns in ionic reaction-advection systems assuming a "self-consistent" electric field are presented. Chemical waves as well as stationary concentration patterns arise due to an interplay of an autocatalytic chemical reaction with diffusion, migration of ions in an applied electric field and hydrodynamic flow. Concentration gradients inside the chemical pattern lead to electric diffusion-potentials which in turn affect the patterns. Thus,the model equations take the general form of the Fokker-Planck equation. The principles of modeling a ionic reaction-diffusion-migration system are applied to a real chemical system, the nonlinear methylene blue-sulfide-oxygen reaction.
Citation: Arno F. Münster. Simulation of stationary chemical patterns and waves in ionic reactions. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 35-46. doi: 10.3934/dcdsb.2002.2.35
[1]

Kolade M. Owolabi. Numerical analysis and pattern formation process for space-fractional superdiffusive systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 543-566. doi: 10.3934/dcdss.2019036

[2]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[3]

Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103

[4]

Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255

[5]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[6]

Michael W. Smiley, Howard A. Levine, Marit Nilsen Hamilton. Numerical simulation of capillary formation during the onset of tumor angiogenesis. Conference Publications, 2003, 2003 (Special) : 817-826. doi: 10.3934/proc.2003.2003.817

[7]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[8]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[9]

Julien Barré, Pierre Degond, Diane Peurichard, Ewelina Zatorska. Modelling pattern formation through differential repulsion. Networks and Heterogeneous Media, 2020, 15 (3) : 307-352. doi: 10.3934/nhm.2020021

[10]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[11]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[12]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[13]

Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

[14]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[15]

Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010

[16]

Amy Allwright, Abdon Atangana. Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 443-466. doi: 10.3934/dcdss.2020025

[17]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[18]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[19]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1163-1178. doi: 10.3934/dcdsb.2021085

[20]

Pierre Degond, Marcello Delitala. Modelling and simulation of vehicular traffic jam formation. Kinetic and Related Models, 2008, 1 (2) : 279-293. doi: 10.3934/krm.2008.1.279

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]