-
Previous Article
Global stability for differential equations with homogeneous nonlinearity and application to population dynamics
- DCDS-B Home
- This Issue
-
Next Article
Analysis of a chemostat model for bacteria and virulent bacteriophage
Regular and chaotic motions of the fast rotating rigid body: a numerical study
1. | Università di Padova, Dipartimento di Matematica Pura e Applicata, INFM and GNFM, Via G. Belzoni 7, 35131 Padova, Italy |
2. | Università di Lecce, Dipartimento di Matematica and GNFM, Via per Arnesano, 73100 Lecce, Italy |
3. | Università di Padova, Dipartimento di Matematica Pura e Applicata and GNFM, Via G. Belzoni 7, 35131 Padova, Italy |
[1] |
Fasma Diele, Carmela Marangi. Positive symplectic integrators for predator-prey dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2661-2678. doi: 10.3934/dcdsb.2017185 |
[2] |
Giancarlo Benettin, Massimiliano Guzzo, Anatoly Neishtadt. A new problem of adiabatic invariance related to the rigid body dynamics. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 959-975. doi: 10.3934/dcds.2008.21.959 |
[3] |
Michael Entov, Leonid Polterovich, Daniel Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1455-1468. doi: 10.3934/dcds.2010.28.1455 |
[4] |
Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks and Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597 |
[5] |
Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018 |
[6] |
Sebastián Ferrer, Francisco J. Molero. Andoyer's variables and phases in the free rigid body. Journal of Geometric Mechanics, 2014, 6 (1) : 25-37. doi: 10.3934/jgm.2014.6.25 |
[7] |
Kai Koike. Wall effect on the motion of a rigid body immersed in a free molecular flow. Kinetic and Related Models, 2018, 11 (3) : 441-467. doi: 10.3934/krm.2018020 |
[8] |
Arnab Roy, Takéo Takahashi. Local null controllability of a rigid body moving into a Boussinesq flow. Mathematical Control and Related Fields, 2019, 9 (4) : 793-836. doi: 10.3934/mcrf.2019050 |
[9] |
Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325 |
[10] |
Banavara N. Shashikanth. Poisson brackets for the dynamically coupled system of a free boundary and a neutrally buoyant rigid body in a body-fixed frame. Journal of Geometric Mechanics, 2020, 12 (1) : 25-52. doi: 10.3934/jgm.2020003 |
[11] |
Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283 |
[12] |
Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363 |
[13] |
Joris Vankerschaver, Eva Kanso, Jerrold E. Marsden. The geometry and dynamics of interacting rigid bodies and point vortices. Journal of Geometric Mechanics, 2009, 1 (2) : 223-266. doi: 10.3934/jgm.2009.1.223 |
[14] |
Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109 |
[15] |
Marie-Claude Arnaud. When are the invariant submanifolds of symplectic dynamics Lagrangian?. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1811-1827. doi: 10.3934/dcds.2014.34.1811 |
[16] |
Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077 |
[17] |
Pablo G. Barrientos, Artem Raibekas. Robustly non-hyperbolic transitive symplectic dynamics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 5993-6013. doi: 10.3934/dcds.2018259 |
[18] |
L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395 |
[19] |
Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations and Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69 |
[20] |
Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1389-1409. doi: 10.3934/dcds.2017057 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]