February  2003, 3(1): 115-139. doi: 10.3934/dcdsb.2003.3.115

Characteristics and the initial value problem of a completely integrable shallow water equation

1. 

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

Received  March 2002 Revised  September 2002 Published  November 2002

The initial value problem for a completely integrable shallow water wave equation is analyzed through its formulation in terms of characteristics. The resulting integro-differential equations give rise to finite dimensional projections onto a class of distributional solutions of the equation, equivalent to taking the Riemann sum approximation of the integrals. These finite dimensional projections are then explicitly solved via a Gram-Schmidt orthogonalization procedure. A particle method based on these reductions is implemented to solve the wave equation numerically.
Citation: Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115
[1]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

[2]

Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61

[3]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[4]

Rafael De La Llave, Victoria Sadovskaya. On the regularity of integrable conformal structures invariant under Anosov systems. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 377-385. doi: 10.3934/dcds.2005.12.377

[5]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[6]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

[7]

Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67

[8]

William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307

[9]

Marcel Guardia. Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2829-2859. doi: 10.3934/dcds.2013.33.2829

[10]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406

[11]

Qihuai Liu, Pedro J. Torres. Orbital dynamics on invariant sets of contact Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021297

[12]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[13]

Xiaoying Han, Peter E. Kloeden. Pullback and forward dynamics of nonautonomous Laplacian lattice systems on weighted spaces. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021143

[14]

Yiju Chen, Xiaohu Wang, Kenan Wu. Wong-Zakai approximations and pathwise dynamics of stochastic fractional lattice systems. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2529-2560. doi: 10.3934/cpaa.2022059

[15]

Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025

[16]

Jingang Zhao, Chi Zhang. Finite-horizon optimal control of discrete-time linear systems with completely unknown dynamics using Q-learning. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1471-1483. doi: 10.3934/jimo.2020030

[17]

Manuel F. Rañada. Quasi-bi-Hamiltonian structures and superintegrability: Study of a Kepler-related family of systems endowed with generalized Runge-Lenz integrals of motion. Journal of Geometric Mechanics, 2021, 13 (2) : 195-208. doi: 10.3934/jgm.2021003

[18]

Yangyou Pan, Yuzhen Bai, Xiang Zhang. Dynamics of locally linearizable complex two dimensional cubic Hamiltonian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1761-1774. doi: 10.3934/dcdss.2019116

[19]

Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208

[20]

Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (29)

Other articles
by authors

[Back to Top]