
Previous Article
T cell sensitivity and specificity  kinetic proofreading revisited
 DCDSB Home
 This Issue
 Next Article
MonteCarlo and polyhedronbased simulations I: extremal states of the logarithmic Nbody problem on a sphere
1.  Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, United States 
2.  Department of Computational Science, National University of Singapore 
3.  Department of Physics, National University of Singapore 
[1] 
Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2022, 4 (1) : 3770. doi: 10.3934/fods.2021034 
[2] 
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291315. doi: 10.3934/krm.2013.6.291 
[3] 
Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems and Imaging, 2013, 7 (1) : 81105. doi: 10.3934/ipi.2013.7.81 
[4] 
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 2747. doi: 10.3934/fods.2021004 
[5] 
Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201224. doi: 10.3934/fods.2021014 
[6] 
Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete and Continuous Dynamical Systems  B, 2019, 24 (8) : 38813903. doi: 10.3934/dcdsb.2018335 
[7] 
Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683696. doi: 10.3934/mbe.2006.3.683 
[8] 
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete and Continuous Dynamical Systems  B, 2005, 5 (1) : 125136. doi: 10.3934/dcdsb.2005.5.125 
[9] 
OlliPekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803824. doi: 10.3934/nhm.2013.8.803 
[10] 
Mazyar ZahediSeresht, GholamReza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 403416. doi: 10.3934/naco.2017025 
[11] 
Juntao Yang, Viet Ha Hoang. Multilevel Markov Chain Monte Carlo for Bayesian inverse problem for NavierStokes equation. Inverse Problems and Imaging, , () : . doi: 10.3934/ipi.2022033 
[12] 
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 597615. doi: 10.3934/dcds.2006.14.597 
[13] 
Salma Souhaile, Larbi Afifi. Minimum energy compensation for discrete delayed systems with disturbances. Discrete and Continuous Dynamical Systems  S, 2020, 13 (9) : 24892508. doi: 10.3934/dcdss.2020119 
[14] 
Adam Bobrowski, Adam Gregosiewicz, Małgorzata Murat. Functionalspreserving cosine families generated by Laplace operators in C[0,1]. Discrete and Continuous Dynamical Systems  B, 2015, 20 (7) : 18771895. doi: 10.3934/dcdsb.2015.20.1877 
[15] 
Ugo Boscain, Thomas Chambrion, Grégoire Charlot. Nonisotropic 3level quantum systems: complete solutions for minimum time and minimum energy. Discrete and Continuous Dynamical Systems  B, 2005, 5 (4) : 957990. doi: 10.3934/dcdsb.2005.5.957 
[16] 
Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 14991511. doi: 10.3934/dcds.2013.33.1499 
[17] 
Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete and Continuous Dynamical Systems  B, 2010, 14 (3) : 793816. doi: 10.3934/dcdsb.2010.14.793 
[18] 
Maria Cameron. Computing the asymptotic spectrum for networks representing energy landscapes using the minimum spanning tree. Networks and Heterogeneous Media, 2014, 9 (3) : 383416. doi: 10.3934/nhm.2014.9.383 
[19] 
Zoltán Horváth, Yunfei Song, Tamás Terlaky. Steplength thresholds for invariance preserving of discretization methods of dynamical systems on a polyhedron. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 29973013. doi: 10.3934/dcds.2015.35.2997 
[20] 
Nguyen Thi Bach Kim. Finite algorithm for minimizing the product of two linear functions over a polyhedron. Journal of Industrial and Management Optimization, 2007, 3 (3) : 481487. doi: 10.3934/jimo.2007.3.481 
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]