-
Previous Article
Characterizing attraction probabilities via the stochastic Zubov equation
- DCDS-B Home
- This Issue
-
Next Article
Degenerate resonances in forced oscillators
Asymptotic behavior of a singular transport equation modelling cell division
1. | Laboratoire de Mathématiques Appliquées, FRE 2570, Université de Pau et des Pays de l'Adour, Avenue de l'université, 64000 Pau, France |
2. | Department of Physiology, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, Canada H3G 1Y6, Canada |
[1] |
Mostafa Adimy, Abdennasser Chekroun, Tarik-Mohamed Touaoula. Age-structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2765-2791. doi: 10.3934/dcdsb.2015.20.2765 |
[2] |
Tomas Alarcon, Philipp Getto, Anna Marciniak-Czochra, Maria dM Vivanco. A model for stem cell population dynamics with regulated maturation delay. Conference Publications, 2011, 2011 (Special) : 32-43. doi: 10.3934/proc.2011.2011.32 |
[3] |
Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1 |
[4] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[5] |
Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065 |
[6] |
Ricardo Borges, Àngel Calsina, Sílvia Cuadrado. Equilibria of a cyclin structured cell population model. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 613-627. doi: 10.3934/dcdsb.2009.11.613 |
[7] |
Chengjun Guo, Chengxian Guo, Sameed Ahmed, Xinfeng Liu. Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with time-delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2473-2489. doi: 10.3934/dcdsb.2016056 |
[8] |
A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701 |
[9] |
Emmanuel N. Barron, Rafal Goebel, Robert R. Jensen. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1693-1706. doi: 10.3934/dcdsb.2012.17.1693 |
[10] |
Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure and Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211 |
[11] |
Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985 |
[12] |
Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117 |
[13] |
Janet Dyson, Rosanna Villella-Bressan, G.F. Webb. The steady state of a maturity structured tumor cord cell population. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 115-134. doi: 10.3934/dcdsb.2004.4.115 |
[14] |
Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure and Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657 |
[15] |
Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19 |
[16] |
E.V. Presnov, Z. Agur. The Role Of Time Delays, Slow Processes And Chaos In Modulating The Cell-Cycle Clock. Mathematical Biosciences & Engineering, 2005, 2 (3) : 625-642. doi: 10.3934/mbe.2005.2.625 |
[17] |
Nasser Sweilam, Fathalla Rihan, Seham AL-Mekhlafi. A fractional-order delay differential model with optimal control for cancer treatment based on synergy between anti-angiogenic and immune cell therapies. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2403-2424. doi: 10.3934/dcdss.2020120 |
[18] |
Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071 |
[19] |
Kim Knudsen, Mikko Salo. Determining nonsmooth first order terms from partial boundary measurements. Inverse Problems and Imaging, 2007, 1 (2) : 349-369. doi: 10.3934/ipi.2007.1.349 |
[20] |
Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]