# American Institute of Mathematical Sciences

August  2003, 3(3): 469-477. doi: 10.3934/dcdsb.2003.3.469

## Western boundary currents versus vanishing depth

 1 Laboratoire de Mathématiques Appliquées, UMR6620, 24 avenue des Landais, 63177 Aubière, France, France

Received  May 2002 Revised  January 2003 Published  May 2003

In the case of a constant depth, western intensification of currents in oceanic basins was mathematically recovered in various models (such as Stommel, Munk or quasi-geostrophic ones) as a boundary layer appearing when the solution of equations converges to the solution of a pure transport equation. This convergence is linked to the fact that any characteristic line of the transport vector field included in the equations crosses the boundary, and the boundary layer is located at outgoing points.
Here we recover such a boundary layer for the vertical-geostrophic model with a general bathymetry. More precisely, we allow depth to vanish on the shore in which case the above mentioned characteristic lines no longer cross the boundary. However a boundary layer still appears because the transport vector field $a$ (which is tangential to the boundary) locally converges to a vector field $\overline{a}$ with characteristic lines crossing the boundary.
Citation: Didier Bresch, Jacques Simon. Western boundary currents versus vanishing depth. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 469-477. doi: 10.3934/dcdsb.2003.3.469
 [1] Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575 [2] Kateryna Marynets. Stability analysis of the boundary value problem modelling a two-layer ocean. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2433-2445. doi: 10.3934/cpaa.2022083 [3] Botao ZHOU, Ying XU. How the “Best” CMIP5 Models Project Relations of Asian–Pacific Oscillation to Circulation Backgrounds Favorable for Tropical Cyclone Genesis over the Western North Pacific. Inverse Problems and Imaging, 2017, 11 (2) : 107-116. doi: 10.1007/s13351-017-6088-4 [4] Tómas Chacón-Rebollo, Macarena Gómez-Mármol, Samuele Rubino. On the existence and asymptotic stability of solutions for unsteady mixing-layer models. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 421-436. doi: 10.3934/dcds.2014.34.421 [5] Carine Lucas, Antoine Rousseau. Cosine effect in ocean models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 841-857. doi: 10.3934/dcdsb.2010.13.841 [6] Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic and Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008 [7] Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu. A final size relation for epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (2) : 159-175. doi: 10.3934/mbe.2007.4.159 [8] Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253 [9] Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213 [10] Michael Ghil. The wind-driven ocean circulation: Applying dynamical systems theory to a climate problem. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 189-228. doi: 10.3934/dcds.2017008 [11] Bo You, Chunxiang Zhao. Approximation of stationary statistical properties of the three dimensional autonomous planetary geostrophic equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3183-3198. doi: 10.3934/dcdsb.2020057 [12] Bo You. Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1579-1604. doi: 10.3934/dcds.2020332 [13] T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171 [14] Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 [15] Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 [16] Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669 [17] Gung-Min Gie, Chang-Yeol Jung, Roger Temam. Recent progresses in boundary layer theory. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2521-2583. doi: 10.3934/dcds.2016.36.2521 [18] X. Liang, Roderick S. C. Wong. On a Nested Boundary-Layer Problem. Communications on Pure and Applied Analysis, 2009, 8 (1) : 419-433. doi: 10.3934/cpaa.2009.8.419 [19] Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163 [20] David Julitz. Numerical approximation of atmospheric-ocean models with subdivision algorithm. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 429-447. doi: 10.3934/dcds.2007.18.429

2021 Impact Factor: 1.497