November  2003, 3(4): 495-504. doi: 10.3934/dcdsb.2003.3.495

Using numerical experiments to discover theorems in differential equations

1. 

Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609-2247, United States

Received  December 2002 Revised  March 2003 Published  August 2003

This work explores the use of numerical experiments in two specific cases: (1) the discovery of two families of exact solutions to the elastic string equations, and approximately periodic solutions that appear to exist near pseudo-solutions formed from these families; (2) the study of the diffusion-reaction-conduction process in an electrolyte wedge (meniscus corner) of a current-producing porous electrode. This latter work establishes the well-posedness of the electrolyte wedge problem and provides asymptotic expansions for the current density and total current produced by such a wedge. The theme of this paper is the use of computing to discover a result that is difficult or impossible to find without a computer, but which once observed, can then be proven mathematically.
Citation: Joseph D. Fehribach. Using numerical experiments to discover theorems in differential equations. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 495-504. doi: 10.3934/dcdsb.2003.3.495
[1]

Björn Gebhard. Periodic solutions for the N-vortex problem via a superposition principle. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5443-5460. doi: 10.3934/dcds.2018240

[2]

Josef DiblÍk, Rigoberto Medina. Exact asymptotics of positive solutions to Dickman equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 101-121. doi: 10.3934/dcdsb.2018007

[3]

Zhong-Jie Han, Zhuangyi Liu, Jing Wang. Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1455-1467. doi: 10.3934/dcdss.2022031

[4]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial and Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[5]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control and Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[6]

Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116

[7]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[8]

Marco Campo, José R. Fernández, Maria Grazia Naso. A dynamic problem involving a coupled suspension bridge system: Numerical analysis and computational experiments. Evolution Equations and Control Theory, 2019, 8 (3) : 489-502. doi: 10.3934/eect.2019024

[9]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[10]

Yinzheng Sun, Qin Wang, Kyungwoo Song. Subsonic solutions to a shock diffraction problem by a convex cornered wedge for the pressure gradient system. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4899-4920. doi: 10.3934/cpaa.2020217

[11]

Alexei Heintz, Andrey Piatnitski. Osmosis for non-electrolyte solvents in permeable periodic porous media. Networks and Heterogeneous Media, 2016, 11 (3) : 471-499. doi: 10.3934/nhm.2016005

[12]

Chengming Cao, Xiaoping Yuan. Quasi-periodic solutions for perturbed generalized nonlinear vibrating string equation with singularities. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1867-1901. doi: 10.3934/dcds.2017079

[13]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090

[14]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control and Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[15]

Zhen Wu, Feng Zhang. Maximum principle for discrete-time stochastic optimal control problem and stochastic game. Mathematical Control and Related Fields, 2022, 12 (2) : 475-493. doi: 10.3934/mcrf.2021031

[16]

Miaomiao Chen, Rong Yuan. Maximum principle for the optimal harvesting problem of a size-stage-structured population model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4619-4648. doi: 10.3934/dcdsb.2021245

[17]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[18]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[19]

Cheng Hou Tsang, Boris A. Malomed, Kwok Wing Chow. Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1299-1325. doi: 10.3934/dcdss.2011.4.1299

[20]

Elena Beretta, Eric Bonnetier, Elisa Francini, Anna L. Mazzucato. Small volume asymptotics for anisotropic elastic inclusions. Inverse Problems and Imaging, 2012, 6 (1) : 1-23. doi: 10.3934/ipi.2012.6.1

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]