-
Previous Article
Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow
- DCDS-B Home
- This Issue
-
Next Article
Cylindrical shell buckling: a characterization of localization and periodicity
Regular and random patterns in complex bifurcation diagrams
1. | Department of Mechanics, Matherials and Structures, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1521 Budapest, Hungary |
2. | Center for Applied Mathematics and Computational Physics and Department of Structural Mechanics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1521 Budapest, Hungary |
3. | Department of Mechanics, Materials and Structures, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1521 Budapest, Hungary |
4. | Center for Applied Mathematics and Computational Physics and Department of Mechanics, Materials and Structures, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1521 Budapest, Hungary |
[1] |
Jacopo De Simoi. On cyclicity-one elliptic islands of the standard map. Journal of Modern Dynamics, 2013, 7 (2) : 153-208. doi: 10.3934/jmd.2013.7.153 |
[2] |
Maksym Berezhnyi, Evgen Khruslov. Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6 (1) : 89-109. doi: 10.3934/nhm.2011.6.89 |
[3] |
Frédéric Faure. Prequantum chaos: Resonances of the prequantum cat map. Journal of Modern Dynamics, 2007, 1 (2) : 255-285. doi: 10.3934/jmd.2007.1.255 |
[4] |
C. Bonanno, G. Menconi. Computational information for the logistic map at the chaos threshold. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 415-431. doi: 10.3934/dcdsb.2002.2.415 |
[5] |
Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151 |
[6] |
Larry Turyn. Cellular neural networks: asymmetric templates and spatial chaos. Conference Publications, 2003, 2003 (Special) : 864-871. doi: 10.3934/proc.2003.2003.864 |
[7] |
Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 455-483. doi: 10.3934/dcdsb.2008.10.455 |
[8] |
Claire Chavaudret, Stefano Marmi. Analytic linearization of a generalization of the semi-standard map: Radius of convergence and Brjuno sum. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3077-3101. doi: 10.3934/dcds.2022009 |
[9] |
Rafael Labarca, Solange Aranzubia. A formula for the boundary of chaos in the lexicographical scenario and applications to the bifurcation diagram of the standard two parameter family of quadratic increasing-increasing Lorenz maps. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1745-1776. doi: 10.3934/dcds.2018072 |
[10] |
Heide Gluesing-Luerssen, Carolyn Troha. Construction of subspace codes through linkage. Advances in Mathematics of Communications, 2016, 10 (3) : 525-540. doi: 10.3934/amc.2016023 |
[11] |
Ivana Bochicchio, Claudio Giorgi, Elena Vuk. On the viscoelastic coupled suspension bridge. Evolution Equations and Control Theory, 2014, 3 (3) : 373-397. doi: 10.3934/eect.2014.3.373 |
[12] |
Deborah Lacitignola. Saturated treatments and measles resurgence episodes in South Africa: A possible linkage. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1135-1157. doi: 10.3934/mbe.2013.10.1135 |
[13] |
Huimin Lao, Hao Chen. New constant dimension subspace codes from multilevel linkage construction. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022039 |
[14] |
Zayd Hajjej, Mohammad Al-Gharabli, Salim Messaoudi. Stability of a suspension bridge with a localized structural damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1165-1181. doi: 10.3934/dcdss.2021089 |
[15] |
Donghi Lee, Makoto Sakuma. Simple loops on 2-bridge spheres in 2-bridge link complements. Electronic Research Announcements, 2011, 18: 97-111. doi: 10.3934/era.2011.18.97 |
[16] |
Donghi Lee, Makoto Sakuma. Simple loops on 2-bridge spheres in Heckoid orbifolds for 2-bridge links. Electronic Research Announcements, 2012, 19: 97-111. doi: 10.3934/era.2012.19.97 |
[17] |
Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191 |
[18] |
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 |
[19] |
Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275 |
[20] |
Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]