November  2003, 3(4): 589-599. doi: 10.3934/dcdsb.2003.3.589

A model of granular flows over an erodible surface

1. 

University at Buffalo, Buffalo, NY 14260, United States, United States, United States

2. 

Department of Mathematics, University at Buffalo, Buffalo, NY 14260, United States

3. 

University at Buffalo, Department of Geology, Buffalo, NY 14260, United States

4. 

University of Buffalo, Buffalo, NY 14260, United States

Received  March 2003 Revised  July 2003 Published  August 2003

We present a framework for modeling a dry geophysical mass of granular material -- a debris or volcanic avalanche or landslide -- flowing over an erodible surface. We also describe a computing environment that incorporates topographical data into a parallel, adaptive mesh computational algorithm that solves the model equations.
Citation: E.B. Pitman, C.C. Nichita, A.K. Patra, A.C. Bauer, M. Bursik, A. Webb. A model of granular flows over an erodible surface. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 589-599. doi: 10.3934/dcdsb.2003.3.589
[1]

Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry II: Numerical methods. Journal of Computational Dynamics, 2021, 8 (3) : 273-307. doi: 10.3934/jcd.2021012

[2]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic and Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[3]

Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems and Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185

[4]

Caojin Zhang, George Yin, Qing Zhang, Le Yi Wang. Pollution control for switching diffusion models: Approximation methods and numerical results. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3667-3687. doi: 10.3934/dcdsb.2018310

[5]

Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i

[6]

Ian H. Dinwoodie. Computational methods for asynchronous basins. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3391-3405. doi: 10.3934/dcdsb.2016103

[7]

Peter Giesl, Sigurdur Hafstein. Review on computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2291-2331. doi: 10.3934/dcdsb.2015.20.2291

[8]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[9]

Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, Carola-Bibiane Schönlieb. Deep learning as optimal control problems: Models and numerical methods. Journal of Computational Dynamics, 2019, 6 (2) : 171-198. doi: 10.3934/jcd.2019009

[10]

Lili Ju, Wei Leng, Zhu Wang, Shuai Yuan. Numerical investigation of ensemble methods with block iterative solvers for evolution problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4905-4923. doi: 10.3934/dcdsb.2020132

[11]

Xiaowei Pang, Haiming Song, Xiaoshen Wang, Jiachuan Zhang. Efficient numerical methods for elliptic optimal control problems with random coefficient. Electronic Research Archive, 2020, 28 (2) : 1001-1022. doi: 10.3934/era.2020053

[12]

Sergio Blanes, Fernando Casas, Alejandro Escorihuela-Tomàs. Applying splitting methods with complex coefficients to the numerical integration of unitary problems. Journal of Computational Dynamics, 2022, 9 (2) : 85-101. doi: 10.3934/jcd.2021022

[13]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[14]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[15]

G. Machado, L. Trabucho. Analytical and numerical solutions for a class of optimization problems in elasticity. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1013-1032. doi: 10.3934/dcdsb.2004.4.1013

[16]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3459-3478. doi: 10.3934/dcdss.2021018

[17]

Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1

[18]

Abdon Atangana, Zakia Hammouch, Kolade M. Owolabi, Gisele Mephou. Preface: New trends on numerical analysis and analytical methods with their applications to real world problems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : i-i. doi: 10.3934/dcdss.201903i

[19]

Jiantao Jiang, Jing An, Jianwei Zhou. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022066

[20]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial and Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (37)

[Back to Top]