
Previous Article
Modelling the dynamics of endemic malaria in growing populations
 DCDSB Home
 This Issue

Next Article
Diffusion approximation for the one dimensional BoltzmannPoisson system
Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid
1.  Department of Mathematics, University of Tennessee, Knoxville, TN 37996, United States 
[1] 
Cheng Wang. The primitive equations formulated in mean vorticity. Conference Publications, 2003, 2003 (Special) : 880887. doi: 10.3934/proc.2003.2003.880 
[2] 
Juan Li, Wenqiang Li. Controlled reflected meanfield backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control and Related Fields, 2015, 5 (3) : 501516. doi: 10.3934/mcrf.2015.5.501 
[3] 
Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics and Games, 2019, 6 (3) : 221239. doi: 10.3934/jdg.2019016 
[4] 
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of pth mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems  B, 2020, 25 (3) : 11411158. doi: 10.3934/dcdsb.2019213 
[5] 
Chuchu Chen, Jialin Hong. Meansquare convergence of numerical approximations for a class of backward stochastic differential equations. Discrete and Continuous Dynamical Systems  B, 2013, 18 (8) : 20512067. doi: 10.3934/dcdsb.2013.18.2051 
[6] 
Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic meansquare stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems  B, 2013, 18 (6) : 15211531. doi: 10.3934/dcdsb.2013.18.1521 
[7] 
Silvia SastreGomez. Equivalent formulations for steady periodic water waves of fixed meandepth with discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 26692680. doi: 10.3934/dcds.2017114 
[8] 
Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 49875008. doi: 10.3934/dcds.2021065 
[9] 
ChangShou Lin. An expository survey on the recent development of mean field equations. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 387410. doi: 10.3934/dcds.2007.19.387 
[10] 
PierreEmmanuel Jabin. A review of the mean field limits for Vlasov equations. Kinetic and Related Models, 2014, 7 (4) : 661711. doi: 10.3934/krm.2014.7.661 
[11] 
Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Meanfield control and Riccati equations. Networks and Heterogeneous Media, 2015, 10 (3) : 699715. doi: 10.3934/nhm.2015.10.699 
[12] 
Makram Hamouda, ChangYeol Jung, Roger Temam. Asymptotic analysis for the 3D primitive equations in a channel. Discrete and Continuous Dynamical Systems  S, 2013, 6 (2) : 401422. doi: 10.3934/dcdss.2013.6.401 
[13] 
Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 131155. doi: 10.3934/dcds.2019006 
[14] 
Ruchika Sehgal, Aparna Mehra. Worstcase analysis of Gini mean difference safety measure. Journal of Industrial and Management Optimization, 2021, 17 (4) : 16131637. doi: 10.3934/jimo.2020037 
[15] 
Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Meanfield analysis of a scaling MAC radio protocol. Journal of Industrial and Management Optimization, 2021, 17 (1) : 279297. doi: 10.3934/jimo.2019111 
[16] 
Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the BenceMerrimanOsher algorithm for motion by mean curvature. Communications on Pure and Applied Analysis, 2005, 4 (2) : 311339. doi: 10.3934/cpaa.2005.4.311 
[17] 
Oleksandr Misiats, Nung Kwan Yip. Convergence of spacetime discrete threshold dynamics to anisotropic motion by mean curvature. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 63796411. doi: 10.3934/dcds.2016076 
[18] 
Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Meanfield backward stochastic Volterra integral equations. Discrete and Continuous Dynamical Systems  B, 2013, 18 (7) : 19291967. doi: 10.3934/dcdsb.2013.18.1929 
[19] 
Bixiang Wang. Meansquare random invariant manifolds for stochastic differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 14491468. doi: 10.3934/dcds.2020324 
[20] 
Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 24032418. doi: 10.3934/cpaa.2020105 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]