# American Institute of Mathematical Sciences

November  2004, 4(4): 1143-1172. doi: 10.3934/dcdsb.2004.4.1143

## Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid

 1 Department of Mathematics, University of Tennessee, Knoxville, TN 37996, United States

Received  September 2002 Revised  February 2004 Published  August 2004

A second order numerical method for the primitive equations (PEs) of large-scale oceanic flow formulated in mean vorticity is proposed and analyzed, and the full convergence in $L^2$ is established. In the reformulation of the PEs, the prognostic equation for the horizontal velocity is replaced by evolutionary equations for the mean vorticity field and the vertical derivative of the horizontal velocity. The total velocity field (both horizontal and vertical) is statically determined by differential equations at each fixed horizontal point. The standard centered difference approximation is applied to the prognostic equations and the determination of numerical values for the total velocity field is implemented by FFT-based solvers. Stability of such solvers are established and the convergence analysis for the whole scheme is provided in detail.
Citation: Cheng Wang. Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1143-1172. doi: 10.3934/dcdsb.2004.4.1143
 [1] Cheng Wang. The primitive equations formulated in mean vorticity. Conference Publications, 2003, 2003 (Special) : 880-887. doi: 10.3934/proc.2003.2003.880 [2] Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control and Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501 [3] Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics and Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016 [4] Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 [5] Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051 [6] Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521 [7] Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114 [8] Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4987-5008. doi: 10.3934/dcds.2021065 [9] Chang-Shou Lin. An expository survey on the recent development of mean field equations. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 387-410. doi: 10.3934/dcds.2007.19.387 [10] Pierre-Emmanuel Jabin. A review of the mean field limits for Vlasov equations. Kinetic and Related Models, 2014, 7 (4) : 661-711. doi: 10.3934/krm.2014.7.661 [11] Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699 [12] Makram Hamouda, Chang-Yeol Jung, Roger Temam. Asymptotic analysis for the 3D primitive equations in a channel. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 401-422. doi: 10.3934/dcdss.2013.6.401 [13] Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 131-155. doi: 10.3934/dcds.2019006 [14] Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1613-1637. doi: 10.3934/jimo.2020037 [15] Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial and Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111 [16] Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure and Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311 [17] Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076 [18] Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929 [19] Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 [20] Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105

2020 Impact Factor: 1.327

## Metrics

• PDF downloads (56)
• HTML views (0)
• Cited by (2)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]