 Previous Article
 DCDSB Home
 This Issue

Next Article
Unraveling the complexity of cell cycle effects of anticancer drugs in cell populations
A free boundary problem model of ductal carcinoma in situ
1.  Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States 
[1] 
JiaFeng Cao, WanTong Li, Meng Zhao. On a free boundary problem for a nonlocal reactiondiffusion model. Discrete and Continuous Dynamical Systems  B, 2018, 23 (10) : 41174139. doi: 10.3934/dcdsb.2018128 
[2] 
Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic and Related Models, 2015, 8 (4) : 667684. doi: 10.3934/krm.2015.8.667 
[3] 
Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete and Continuous Dynamical Systems  B, 2017, 22 (3) : 895911. doi: 10.3934/dcdsb.2017045 
[4] 
Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolicelliptic type chemotaxis model. Communications on Pure and Applied Analysis, 2018, 17 (6) : 25772592. doi: 10.3934/cpaa.2018122 
[5] 
Donna J. CedioFengya, John G. Stevens. Mathematical modeling of biowall reactors for insitu groundwater treatment. Mathematical Biosciences & Engineering, 2006, 3 (4) : 615634. doi: 10.3934/mbe.2006.3.615 
[6] 
Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 1017. doi: 10.3934/proc.2007.2007.10 
[7] 
Yang Zhang. A free boundary problem of the cancer invasion. Discrete and Continuous Dynamical Systems  B, 2022, 27 (3) : 13231343. doi: 10.3934/dcdsb.2021092 
[8] 
Jiayue Zheng, Shangbin Cui. Bifurcation analysis of a tumormodel free boundary problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems  B, 2020, 25 (11) : 43974410. doi: 10.3934/dcdsb.2020103 
[9] 
Antonio Fasano, Mario Primicerio, Andrea Tesi. A mathematical model for spaghetti cooking with free boundaries. Networks and Heterogeneous Media, 2011, 6 (1) : 3760. doi: 10.3934/nhm.2011.6.37 
[10] 
Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure and Applied Analysis, 2013, 12 (3) : 14311443. doi: 10.3934/cpaa.2013.12.1431 
[11] 
Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete and Continuous Dynamical Systems  B, 2013, 18 (4) : 915943. doi: 10.3934/dcdsb.2013.18.915 
[12] 
Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete and Continuous Dynamical Systems  S, 2012, 5 (1) : 113. doi: 10.3934/dcdss.2012.5.1 
[13] 
ChuehHsin Chang, ChiunChuan Chen. Travelling wave solutions of a free boundary problem for a twospecies competitive model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 10651074. doi: 10.3934/cpaa.2013.12.1065 
[14] 
Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control and Related Fields, 2019, 9 (3) : 425452. doi: 10.3934/mcrf.2019020 
[15] 
Siyu Liu, Haomin Huang, Mingxin Wang. A free boundary problem for a preypredator model with degenerate diffusion and predatorstage structure. Discrete and Continuous Dynamical Systems  B, 2020, 25 (5) : 16491670. doi: 10.3934/dcdsb.2019245 
[16] 
Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified LeslieGower predatorprey model with nonlocal diffusion term. Discrete and Continuous Dynamical Systems  B, 2022, 27 (4) : 21892219. doi: 10.3934/dcdsb.2021129 
[17] 
Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems  B, 2014, 19 (8) : 25572568. doi: 10.3934/dcdsb.2014.19.2557 
[18] 
Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete and Continuous Dynamical Systems  B, 2016, 21 (5) : 14211434. doi: 10.3934/dcdsb.2016003 
[19] 
Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9 (4) : 655668. doi: 10.3934/nhm.2014.9.655 
[20] 
Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 4453. doi: 10.3934/proc.2007.2007.44 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]