Advanced Search
Article Contents
Article Contents

Stable transport of information near essentially unstable localized structures

Abstract Related Papers Cited by
  • When the steady states at infinity become unstable through a pattern forming bifurcation, a travelling wave may bifurcate into a modulated front which is time-periodic in a moving frame. This scenario has been studied by B. Sandstede and A. Scheel for a class of reaction-diffusion systems on the real line. Under general assumptions, they showed that the modulated fronts exist and are spectrally stable near the bifurcation point. Here we consider a model problem for which we can prove the nonlinear stability of these solutions with respect to small localized perturbations. This result does not follow from the spectral stability, because the linearized operator around the modulated front has essential spectrum up to the imaginary axis. The analysis is illustrated by numerical simulations.
    Mathematics Subject Classification: 35B35, 35B32, 35G20.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint