August  2004, 4(3): 555-562. doi: 10.3934/dcdsb.2004.4.555

A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction

1. 

College of Mathematics and Information Science, Shanxi Normal University, Xi'an 710062, China

2. 

Institute of Mathematics, Academy of Mathematics and System Sciences, Academia Sinica, Beijing 100080, China

3. 

Research Center for Applied Mathematics, Xi'an Jiaotong University, Xi'an, 710049, China

Received  October 2002 Revised  August 2003 Published  May 2004

In this paper, a monotone-iterative scheme is established for finding positive periodic solutions of a competition model of tumor-normal cell interaction. The model describes the evolution of a population with normal and tumor cells in a periodically changing environment. This population is under periodical chemotherapeutic treatment. Competition among the two kinds of cells is considered. The mathematical problem involves a coupled system of Lotka-Volterra together with periodically pulsed conditions. The existence of positive periodic solutions is proved by the monotone iterative technique and in a special case, the uniqueness of a periodic solution is obtained by proving that any two periodic solutions have the same average. Moreover, we also show that the system is permanent under the conditions which guarantee the existence of the periodic solution. Some computer simulations are carried out to demonstrate the main results.
Citation: Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555
[1]

Gladis Torres-Espino, Claudio Vidal. Periodic solutions of a tumor-immune system interaction under a periodic immunotherapy. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4523-4547. doi: 10.3934/dcdsb.2020301

[2]

Li Xie, Shigui Ruan. On a macrophage and tumor cell chemotaxis system with both paracrine and autocrine loops. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1447-1479. doi: 10.3934/cpaa.2022025

[3]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[4]

Yuanshi Wang, Hong Wu. Transition of interaction outcomes in a facilitation-competition system of two species. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1463-1475. doi: 10.3934/mbe.2017076

[5]

Jacob Ashiwere Abuchu, Godwin Chidi Ugwunnadi, Ojen Kumar Narain. Inertial Mann-Type iterative method for solving split monotone variational inclusion problem with applications. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022075

[6]

Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022060

[7]

Janet Dyson, Rosanna Villella-Bressan, G. F. Webb. The evolution of a tumor cord cell population. Communications on Pure and Applied Analysis, 2004, 3 (3) : 331-352. doi: 10.3934/cpaa.2004.3.331

[8]

Martina Conte, Maria Groppi, Giampiero Spiga. Qualitative analysis of kinetic-based models for tumor-immune system interaction. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2393-2414. doi: 10.3934/dcdsb.2018060

[9]

Min Yu, Gang Huang, Yueping Dong, Yasuhiro Takeuchi. Complicated dynamics of tumor-immune system interaction model with distributed time delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2391-2406. doi: 10.3934/dcdsb.2020015

[10]

M. Guedda, R. Kersner, M. Klincsik, E. Logak. Exact wavefronts and periodic patterns in a competition system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1589-1600. doi: 10.3934/dcdsb.2014.19.1589

[11]

Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021210

[12]

Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141

[13]

Xiongxiong Bao, Wan-Tong Li, Zhi-Cheng Wang. Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system. Communications on Pure and Applied Analysis, 2020, 19 (1) : 253-277. doi: 10.3934/cpaa.2020014

[14]

Miao Yu, Haoyang Lu, Weipeng Shang. A new iterative identification method for damping control of power system in multi-interference. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1773-1790. doi: 10.3934/dcdss.2020104

[15]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[16]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[17]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems and Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[18]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[19]

Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347-368. doi: 10.3934/mbe.2012.9.347

[20]

João Fialho, Feliz Minhós. High order periodic impulsive problems. Conference Publications, 2015, 2015 (special) : 446-454. doi: 10.3934/proc.2015.0446

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]