# American Institute of Mathematical Sciences

August  2004, 4(3): 777-788. doi: 10.3934/dcdsb.2004.4.777

## The mathematical method of studying the reproduction structure of weeds and its application to Bromus sterilis

 1 Danish Institute of Agricultural Sciences, Department of Agricultural Engineering, Research Centre BygholmPostboks 536, 8700 Horsens, Denmark 2 Department of Crop Protection Research Center, Flakkebjerg, DK-4200 Slagelse, Denmark 3 Key Laboratory for ecosystem models and their application, The State Ethnic Affairs Commission of PRC, The Second North-West University for Nationalities, Yinchuan, 750021, China, China

Received  September 2002 Revised  December 2003 Published  May 2004

This article discusses the structure of weed reproduction incorporating the application of a mathematical model. This mathematical methodology enables the construction, testing and application of distribution models for the analysis of the structure of weed reproduction and weed ecology. The mathematical model was applied, at the individual level, to the weed species, Bromus sterilis. The application of this method, to the weed under competition, resulted in an analysis of the overall reproduction structure of the weed which follows approximately Gaussian distribution patterns and an analysis of the shoots in the weed plant which follow approximately Sigmoid distribution patterns. It was also discovered that the application of the mathematical distribution models, when applied under specific conditions could, effectively estimate the seed production and total number of shoots in a weed plant. On the average, a weed plant has 3 shoots, with each shoot measuring 90cm in height and being composed of 21 spikelets. Besides the estimations of the total shoots and seed production within the experimental field, one may also apply these mathematical distribution models to estimate the germination rate of the species within the experimental field in following years.
Citation: Svend Christensen, Preben Klarskov Hansen, Guozheng Qi, Jihuai Wang. The mathematical method of studying the reproduction structure of weeds and its application to Bromus sterilis. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 777-788. doi: 10.3934/dcdsb.2004.4.777
 [1] Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235 [2] Robert Stephen Cantrell, Chris Cosner, William F. Fagan. The implications of model formulation when transitioning from spatial to landscape ecology. Mathematical Biosciences & Engineering, 2012, 9 (1) : 27-60. doi: 10.3934/mbe.2012.9.27 [3] Kamaldeen Okuneye, Ahmed Abdelrazec, Abba B. Gumel. Mathematical analysis of a weather-driven model for the population ecology of mosquitoes. Mathematical Biosciences & Engineering, 2018, 15 (1) : 57-93. doi: 10.3934/mbe.2018003 [4] Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170 [5] Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219 [6] Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi. SIR Rumor spreading model with trust rate distribution. Networks and Heterogeneous Media, 2018, 13 (3) : 515-530. doi: 10.3934/nhm.2018023 [7] Pierre Gabriel, Hugo Martin. Steady distribution of the incremental model for bacteria proliferation. Networks and Heterogeneous Media, 2019, 14 (1) : 149-171. doi: 10.3934/nhm.2019008 [8] Arturo Hidalgo, Lourdes Tello. On a climatological energy balance model with continents distribution. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1503-1519. doi: 10.3934/dcds.2015.35.1503 [9] Yu Chen, Zixian Cui, Shihan Di, Peibiao Zhao. Capital asset pricing model under distribution uncertainty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021113 [10] Fabio Augusto Milner, Ruijun Zhao. A deterministic model of schistosomiasis with spatial structure. Mathematical Biosciences & Engineering, 2008, 5 (3) : 505-522. doi: 10.3934/mbe.2008.5.505 [11] Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125 [12] Marzia Bisi, Maria Groppi, Giampiero Spiga. Flame structure from a kinetic model for chemical reactions. Kinetic and Related Models, 2010, 3 (1) : 17-34. doi: 10.3934/krm.2010.3.17 [13] Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499-521. doi: 10.3934/mbe.2013.10.499 [14] Anne Devys, Thierry Goudon, Pauline Lafitte. A model describing the growth and the size distribution of multiple metastatic tumors. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 731-767. doi: 10.3934/dcdsb.2009.12.731 [15] Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051 [16] Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3065-3081. doi: 10.3934/jimo.2019094 [17] Zhiwei Tian, Yanyan Shi, Meng Wang, Xiaolong Kong, Lei Li, Feng Fu. A wavelet frame constrained total generalized variation model for imaging conductivity distribution. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2021074 [18] Pei Zhang, Siyan Liu, Dan Lu, Ramanan Sankaran, Guannan Zhang. An out-of-distribution-aware autoencoder model for reduced chemical kinetics. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 913-930. doi: 10.3934/dcdss.2021138 [19] Mariantonia Cotronei, Tomas Sauer. Full rank filters and polynomial reproduction. Communications on Pure and Applied Analysis, 2007, 6 (3) : 667-687. doi: 10.3934/cpaa.2007.6.667 [20] Abhinav Tandon. Crop - Weed interactive dynamics in the presence of herbicides: Mathematical modeling and analysis. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021244

2020 Impact Factor: 1.327