August  2004, 4(3): 805-811. doi: 10.3934/dcdsb.2004.4.805

Identifiability of models for clinical trials with noncompliance

1. 

Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100081, China

2. 

Department of Applied Mathematics, Beijing University of Technology, Beijing 100022, China

Received  November 2002 Revised  December 2003 Published  May 2004

In this article we focus on clinical trials in which the compliance is measured with random errors, and develop an error-in-variables model for the analysis of the clinical trials. With this model, we separate the efficacy of prescribed treatment from that of the compliance. With additional information correlated with compliance, we prove that the model is identifiable, and get estimators for the parameters of interest, including the parameter reflecting the efficacy of the treatment. Furthermore, we extend the model to stratified populations, and discuss the asymptotic properties of the estimators.
Citation: Tianfa Xie, Zhong-Zhan Zhang. Identifiability of models for clinical trials with noncompliance. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 805-811. doi: 10.3934/dcdsb.2004.4.805
[1]

Wen Zhang, Lily Li Liu. Asymptotic normality of associated Lah numbers. Mathematical Foundations of Computing, 2021, 4 (3) : 185-191. doi: 10.3934/mfc.2021011

[2]

Karla L. Cortez, Javier F. Rosenblueth. Normality and uniqueness of Lagrange multipliers. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3169-3188. doi: 10.3934/dcds.2018138

[3]

Peter E. Kloeden, Jacson Simsen, Petra Wittbold. Asymptotic behavior of coupled inclusions with variable exponents. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1001-1016. doi: 10.3934/cpaa.2020046

[4]

Ismail Abdulrashid, Xiaoying Han. A mathematical model of chemotherapy with variable infusion. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1875-1890. doi: 10.3934/cpaa.2020082

[5]

Evans K. Afenya. Using Mathematical Modeling as a Resource in Clinical Trials. Mathematical Biosciences & Engineering, 2005, 2 (3) : 421-436. doi: 10.3934/mbe.2005.2.421

[6]

Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks & Heterogeneous Media, 2010, 5 (4) : 783-812. doi: 10.3934/nhm.2010.5.783

[7]

Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927

[8]

Giuseppe Buttazzo, Filippo Santambrogio. Asymptotical compliance optimization for connected networks. Networks & Heterogeneous Media, 2007, 2 (4) : 761-777. doi: 10.3934/nhm.2007.2.761

[9]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[10]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[11]

Chiun-Chang Lee. Asymptotic analysis of charge conserving Poisson-Boltzmann equations with variable dielectric coefficients. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3251-3276. doi: 10.3934/dcds.2016.36.3251

[12]

Cornel Marius Murea, Dan Tiba. Topological optimization and minimal compliance in linear elasticity. Evolution Equations & Control Theory, 2020, 9 (4) : 1115-1131. doi: 10.3934/eect.2020043

[13]

Yannis Petrohilos-Andrianos, Anastasios Xepapadeas. On the evolution of compliance and regulation with tax evading agents. Journal of Dynamics & Games, 2016, 3 (3) : 231-260. doi: 10.3934/jdg.2016013

[14]

Al-hassem Nayam. Asymptotics of an optimal compliance-network problem. Networks & Heterogeneous Media, 2013, 8 (2) : 573-589. doi: 10.3934/nhm.2013.8.573

[15]

Zhiting Xu. Traveling waves in an SEIR epidemic model with the variable total population. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3723-3742. doi: 10.3934/dcdsb.2016118

[16]

Olivier Delestre, Arthur R. Ghigo, José-Maria Fullana, Pierre-Yves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks & Heterogeneous Media, 2016, 11 (1) : 69-87. doi: 10.3934/nhm.2016.11.69

[17]

Giuseppe D'Onofrio, Enrica Pirozzi. Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences & Engineering, 2016, 13 (3) : 495-507. doi: 10.3934/mbe.2016003

[18]

Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061

[19]

Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable. Evolution Equations & Control Theory, 2018, 7 (4) : 571-585. doi: 10.3934/eect.2018027

[20]

Sun-Ho Choi, Hyowon Seo, Minha Yoo. Phase transitions of the SIR Rumor spreading model with a variable trust rate. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021111

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]