November  2004, 4(4): 921-934. doi: 10.3934/dcdsb.2004.4.921

The algorithmic information content for randomly perturbed systems

1. 

Department of Mathematics, University of Pisa, via Buonarroti, 2/a, 56127 Pisa

Received  January 2003 Revised  March 2004 Published  August 2004

In this paper we prove estimates on the behaviour of the Kolmogorov-Sinai entropy relative to a partition for randomly perturbed dynamical systems. Our estimates use the entropy for the unperturbed system and are obtained using the notion of Algorithmic Information Content. The main result is an extension of known results to study time series obtained by the observation of real systems.
Citation: C. Bonanno. The algorithmic information content for randomly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 921-934. doi: 10.3934/dcdsb.2004.4.921
[1]

Karsten Keller. Permutations and the Kolmogorov-Sinai entropy. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 891-900. doi: 10.3934/dcds.2012.32.891

[2]

Tim Gutjahr, Karsten Keller. Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4207-4224. doi: 10.3934/dcds.2019170

[3]

Alexandra Antoniouk, Karsten Keller, Sergiy Maksymenko. Kolmogorov-Sinai entropy via separation properties of order-generated $\sigma$-algebras. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1793-1809. doi: 10.3934/dcds.2014.34.1793

[4]

Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks and Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441

[5]

H. T. Banks, John E. Banks, R. A. Everett, John D. Stark. An adaptive feedback methodology for determining information content in stable population studies. Mathematical Biosciences & Engineering, 2016, 13 (4) : 653-671. doi: 10.3934/mbe.2016013

[6]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[7]

Yujun Zhu. Preimage entropy for random dynamical systems. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829

[8]

Tomás Caraballo, Renato Colucci, Xiaoying Han. Semi-Kolmogorov models for predation with indirect effects in random environments. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2129-2143. doi: 10.3934/dcdsb.2016040

[9]

Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693

[10]

Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003

[11]

Artur O. Lopes, Jairo K. Mengue. On information gain, Kullback-Leibler divergence, entropy production and the involution kernel. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3593-3627. doi: 10.3934/dcds.2022026

[12]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[13]

Zehan Lin, Chongbin Xu, Caidi Zhao, Chujin Li. Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022065

[14]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 945-976. doi: 10.3934/dcdsb.2021076

[15]

Ying Jiao, Idris Kharroubi. Information uncertainty related to marked random times and optimal investment. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 3-. doi: 10.1186/s41546-018-0029-8

[16]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[17]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[18]

Tao Gu, Peiyu Ren, Maozhu Jin, Hua Wang. Tourism destination competitiveness evaluation in Sichuan province using TOPSIS model based on information entropy weights. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 771-782. doi: 10.3934/dcdss.2019051

[19]

R. Estrada. Boundary layers and spectral content asymptotics. Conference Publications, 1998, 1998 (Special) : 242-252. doi: 10.3934/proc.1998.1998.242

[20]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]