November  2004, 4(4): 935-960. doi: 10.3934/dcdsb.2004.4.935

Dynamical systems and computable information

1. 

Dip. di Matematica Applicata, Università di Pisa, Via Bonanno Pisano 25/B

2. 

Department of Mathematics, University of Pisa, via Buonarroti, 2/a, 56127 Pisa

3. 

Dipartimento di Matematica Applicata, Università di Pisa, Via Bonanno Pisano

4. 

Dipartimento di Matematica Applicata, Università di Pisa, Via Bonanno 26/b, 56125 Pisa, Italy

5. 

Dipartimento di Fisica, Università di Pisa, Piazza Torricelli 2, 56127 Pisa, Italy

Received  December 2002 Revised  January 2004 Published  August 2004

We present some new results that relate information to chaotic dynamics. In our approach the quantity of information is measured by the Algorithmic Information Content (Kolmogorov complexity) or by a sort of computable version of it (Computable Information Content) in which the information is measured by using a suitable universal data compression algorithm. We apply these notions to the study of dynamical systems by considering the asymptotic behavior of the quantity of information necessary to describe their orbits. When a system is ergodic, this method provides an indicator that equals the Kolmogorov-Sinai entropy almost everywhere. Moreover, if the entropy is null, our method gives new indicators that measure the unpredictability of the system and allows various kind of weak chaos to be classified. Actually, this is the main motivation of this work. The behavior of a 0-entropy dynamical system is far to be completely predictable except that in particular cases. In fact there are 0-entropy systems that exhibit a sort of weak chaos, where the information necessary to describe the orbit behavior increases with time more than logarithmically (periodic case) even if less than linearly (positive entropy case). Also, we believe that the above method is useful to classify 0-entropy time series. To support this point of view, we show some theoretical and experimental results in specific cases.
Citation: Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935
[1]

Stefano Galatolo. Orbit complexity and data compression. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[2]

Subrata Dasgupta. Disentangling data, information and knowledge. Big Data & Information Analytics, 2016, 1 (4) : 377-389. doi: 10.3934/bdia.2016016

[3]

C. Bonanno, G. Menconi. Computational information for the logistic map at the chaos threshold. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 415-431. doi: 10.3934/dcdsb.2002.2.415

[4]

Richard Archibald, Hoang Tran. A dictionary learning algorithm for compression and reconstruction of streaming data in preset order. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 655-668. doi: 10.3934/dcdss.2021102

[5]

Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231

[6]

Yang Yu. Introduction: Special issue on computational intelligence methods for big data and information analytics. Big Data & Information Analytics, 2017, 2 (1) : i-ii. doi: 10.3934/bdia.201701i

[7]

Verena Bögelein, Frank Duzaar, Ugo Gianazza. Very weak solutions of singular porous medium equations with measure data. Communications on Pure and Applied Analysis, 2015, 14 (1) : 23-49. doi: 10.3934/cpaa.2015.14.23

[8]

Rafail Krichevskii and Vladimir Potapov. Compression and restoration of square integrable functions. Electronic Research Announcements, 1996, 2: 42-49.

[9]

Matthias Ngwa, Ephraim Agyingi. A mathematical model of the compression of a spinal disc. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1061-1083. doi: 10.3934/mbe.2011.8.1061

[10]

Philip N. J. Eagle, Steven D. Galbraith, John B. Ong. Point compression for Koblitz elliptic curves. Advances in Mathematics of Communications, 2011, 5 (1) : 1-10. doi: 10.3934/amc.2011.5.1

[11]

Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems and Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020

[12]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[13]

Miroslav Bulíček, Victoria Patel, Yasemin Şengül, Endre Süli. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1931-1960. doi: 10.3934/cpaa.2021053

[14]

Lassi Roininen, Markku S. Lehtinen, Petteri Piiroinen, Ilkka I. Virtanen. Perfect radar pulse compression via unimodular fourier multipliers. Inverse Problems and Imaging, 2014, 8 (3) : 831-844. doi: 10.3934/ipi.2014.8.831

[15]

Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems and Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465

[16]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[17]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[18]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[19]

Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275

[20]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (12)

[Back to Top]