# American Institute of Mathematical Sciences

November  2004, 4(4): 983-997. doi: 10.3934/dcdsb.2004.4.983

## Hölder continuous solutions of an obstacle thermistor problem

 1 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton AB, Canada T6G 2G1, Canada 2 Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2G1 3 Department of Mathematical Sciences, University of Alberta, Edmonton A B, Canada T6G 2G1

Received  March 2003 Revised  April 2004 Published  August 2004

In this paper we consider a thermistor problem with a current source, i.e., a nonlocal boundary condition. The electric potential is unknown on part of the boundary, but the current through it is known. We apply a decomposition technique and transform the equation satisfied by the potential into two elliptic problems with usual boundary conditions. The unique solvability of the initial boundary value problem is achieved.
Citation: Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983
 [1] Walter Allegretto, Yanping Lin, Shuqing Ma. Existence and long time behaviour of solutions to obstacle thermistor equations. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 757-780. doi: 10.3934/dcds.2002.8.757 [2] Tianyang Nie, Marek Rutkowski. Existence, uniqueness and strict comparison theorems for BSDEs driven by RCLL martingales. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 319-342. doi: 10.3934/puqr.2021016 [3] María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure & Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313 [4] María Teresa González Montesinos, Francisco Ortegón Gallego. The thermistor problem with degenerate thermal conductivity and metallic conduction. Conference Publications, 2007, 2007 (Special) : 446-455. doi: 10.3934/proc.2007.2007.446 [5] Lei Yang, Xiao-Ping Wang. Dynamics of domain wall in thin film driven by spin current. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1251-1263. doi: 10.3934/dcdsb.2010.14.1251 [6] Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033 [7] Chunqing Lu. Existence and uniqueness of single spike solution of the carrier-pearson problem. Conference Publications, 2001, 2001 (Special) : 259-264. doi: 10.3934/proc.2001.2001.259 [8] María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem under the Wiedemann-Franz law with metallic conduction. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 901-923. doi: 10.3934/dcdsb.2007.8.901 [9] Ali Fuat Alkaya, Dindar Oz. An optimal algorithm for the obstacle neutralization problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 835-856. doi: 10.3934/jimo.2016049 [10] Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218 [11] Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure & Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839 [12] Mikhail D. Surnachev, Vasily V. Zhikov. On existence and uniqueness classes for the Cauchy problem for parabolic equations of the p-Laplace type. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1783-1812. doi: 10.3934/cpaa.2013.12.1783 [13] Juan J. Manfredi, Julio D. Rossi, Stephanie J. Somersille. An obstacle problem for Tug-of-War games. Communications on Pure & Applied Analysis, 2015, 14 (1) : 217-228. doi: 10.3934/cpaa.2015.14.217 [14] Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240 [15] Song Wang. Numerical solution of an obstacle problem with interval coefficients. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 23-38. doi: 10.3934/naco.2019030 [16] Joachim Naumann. On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 837-852. doi: 10.3934/dcdss.2017042 [17] Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 [18] Leonardo Kosloff, Tomas Schonbek. Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1025-1043. doi: 10.3934/dcdss.2014.7.1025 [19] Elder J. Villamizar-Roa, Elva E. Ortega-Torres. On a generalized Boussinesq model around a rotating obstacle: Existence of strong solutions. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 825-847. doi: 10.3934/dcdsb.2011.15.825 [20] H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

2020 Impact Factor: 1.327