-
Previous Article
The steady state of a maturity structured tumor cord cell population
- DCDS-B Home
- This Issue
-
Next Article
Macrophage-tumour interactions: In vivo dynamics
A mathematical model of BCR-ABL autophosphorylation, signaling through the CRKL pathway, and Gleevec dynamics in chronic myeloid leukemia
1. | Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States, United States |
2. | Biocybernetics Laboratory, Departments of Computer Science and Medicine, University of California, Los Angeles, Los Angeles, California 90095-1596, United States, United States, United States |
[1] |
Natalia L. Komarova. Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences & Engineering, 2011, 8 (2) : 289-306. doi: 10.3934/mbe.2011.8.289 |
[2] |
R. A. Everett, Y. Zhao, K. B. Flores, Yang Kuang. Data and implication based comparison of two chronic myeloid leukemia models. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1501-1518. doi: 10.3934/mbe.2013.10.1501 |
[3] |
Seema Nanda, Lisette dePillis, Ami Radunskaya. B cell chronic lymphocytic leukemia - A model with immune response. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 1053-1076. doi: 10.3934/dcdsb.2013.18.1053 |
[4] |
Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253 |
[5] |
Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151-165. doi: 10.3934/mbe.2013.10.151 |
[6] |
Samantha Erwin, Stanca M. Ciupe. Germinal center dynamics during acute and chronic infection. Mathematical Biosciences & Engineering, 2017, 14 (3) : 655-671. doi: 10.3934/mbe.2017037 |
[7] |
Olga Vasilyeva, Tamer Oraby, Frithjof Lutscher. Aggregation and environmental transmission in chronic wasting disease. Mathematical Biosciences & Engineering, 2015, 12 (1) : 209-231. doi: 10.3934/mbe.2015.12.209 |
[8] |
Silviu-Iulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 129-156. doi: 10.3934/dcdsb.2010.13.129 |
[9] |
Ling Xu, Yi Jiang. Cilium height difference between strokes is more effective in driving fluid transport in mucociliary clearance: A numerical study. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1107-1126. doi: 10.3934/mbe.2015.12.1107 |
[10] |
K. E. Starkov, Svetlana Bunimovich-Mendrazitsky. Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1059-1075. doi: 10.3934/mbe.2016030 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]