May  2005, 5(2): 489-512. doi: 10.3934/dcdsb.2005.5.489

The complex KdV equation with or without dissipation

1. 

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, United States

Received  August 2003 Revised  July 2004 Published  February 2005

Solutions of the complex KdV equation and the complex KdV- Burgers equation are studied theoretically and numerically. Attention is focused on whether their solutions are regular for all time. This is a difficult issue partially because the conservation laws of the KdV equation no longer yield a priori bounds for its complex-valued solutions in the $L^2$-space. The problem is tackled here on several fronts including investigating how the regularity of the real part is related to that of the imaginary part, studying blow-up of series solutions, and assessing the impact of dissipation. Systematic numerical simulations are performed to complement the theoretical results.
Citation: Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489
[1]

Jerry L. Bona, Stéphane Vento, Fred B. Weissler. Singularity formation and blowup of complex-valued solutions of the modified KdV equation. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4811-4840. doi: 10.3934/dcds.2013.33.4811

[2]

S. Raynor, G. Staffilani. Low regularity stability of solitons for the KDV equation. Communications on Pure and Applied Analysis, 2003, 2 (3) : 277-296. doi: 10.3934/cpaa.2003.2.277

[3]

Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036

[4]

Zhaosheng Feng, Qingguo Meng. Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 285-291. doi: 10.3934/dcdsb.2007.7.285

[5]

Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1177-1198. doi: 10.3934/dcdsb.2018147

[6]

Rowan Killip, Soonsik Kwon, Shuanglin Shao, Monica Visan. On the mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 191-221. doi: 10.3934/dcds.2012.32.191

[7]

María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038

[8]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[9]

Gianluca Frasca-Caccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307-323. doi: 10.3934/jcd.2019015

[10]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1699-1719. doi: 10.3934/cpaa.2021037

[11]

Benjamin Dodson, Cristian Gavrus. Instability of the soliton for the focusing, mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1767-1799. doi: 10.3934/dcds.2021171

[12]

Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022048

[13]

Jongmin Han, Masoud Yari. Dynamic bifurcation of the complex Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 875-891. doi: 10.3934/dcdsb.2009.11.875

[14]

Mostafa Abounouh, Olivier Goubet. Regularity of the attractor for kp1-Burgers equation: the periodic case. Communications on Pure and Applied Analysis, 2004, 3 (2) : 237-252. doi: 10.3934/cpaa.2004.3.237

[15]

María-Santos Bruzón, Elena Recio, Tamara-María Garrido, Rafael de la Rosa. Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2691-2701. doi: 10.3934/dcdss.2020222

[16]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[17]

Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations and Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027

[18]

Jerry L. Bona, Hongqiu Chen, Shu-Ming Sun, Bing-Yu Zhang. Comparison of quarter-plane and two-point boundary value problems: The KdV-equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 465-495. doi: 10.3934/dcdsb.2007.7.465

[19]

Marina Chugunova, Dmitry Pelinovsky. Two-pulse solutions in the fifth-order KdV equation: Rigorous theory and numerical approximations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 773-800. doi: 10.3934/dcdsb.2007.8.773

[20]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]