-
Previous Article
First numerical evidence of global Arnold diffusion in quasi-integrable systems
- DCDS-B Home
- This Issue
-
Next Article
Multiscale numerical method for nonlinear Maxwell equations
Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study
1. | Université Bordeaux 1, IMB, CNRS UMR 5466, INRIA projet MC2, 351, Cours de la Libération, 33405 Talence Cedex, France |
Multiresolution methods like the wavelet packets or the cosine packets, well known in signal decomposition, can be used for the 2D turbulence analysis. Wavelet or cosine decompositions are more and more used in physical applications and in particular in fluid mechanics. Following the works of M. Farge et al , we present a numerical and qualitative study of a two-dimensional turbulence fluid using these methods. The decompositions allow to separate the fluid in two parts which are analyzed and the corresponding energy spectra are computed. In the first part of this paper, the methods are presented and the numerical results are briefly compared to the theoretical spectra predicted by the both theories. A more detailed study, using only wavelet packets decompositions and based on numerical and experimental data, will be carried out and the results will be reported in the second part of the paper. A tentative of physical interpretation of the different components of the flow will be also proposed.
[1] |
Patrick Fischer, Charles-Henri Bruneau, Hamid Kellay. Multiresolution analysis for 2D turbulence. part 2: A physical interpretation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 717-734. doi: 10.3934/dcdsb.2007.7.717 |
[2] |
Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145 |
[3] |
S. Danilov. Non-universal features of forced 2D turbulence in the energy and enstrophy ranges. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 67-78. doi: 10.3934/dcdsb.2005.5.67 |
[4] |
Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence. Part 2: Inhomogeneous cases. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 227-241. doi: 10.3934/dcds.2010.28.227 |
[5] |
Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2-D turbulence. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1327-1351. doi: 10.3934/dcds.2010.27.1327 |
[6] |
Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 2. Approach to the KLB limit and interpretation of experimental evidence. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 103-124. doi: 10.3934/dcdsb.2005.5.103 |
[7] |
Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic and Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685 |
[8] |
Bernd Kawohl, Guido Sweers. On a formula for sets of constant width in 2d. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2117-2131. doi: 10.3934/cpaa.2019095 |
[9] |
Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395 |
[10] |
Géry de Saxcé, Claude Vallée. Structure of the space of 2D elasticity tensors. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1525-1537. doi: 10.3934/dcdss.2013.6.1525 |
[11] |
Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations and Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297 |
[12] |
Brian Ryals, Robert J. Sacker. Global stability in the 2D Ricker equation revisited. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 585-604. doi: 10.3934/dcdsb.2017028 |
[13] |
Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106 |
[14] |
María J. Martín, Jukka Tuomela. 2D incompressible Euler equations: New explicit solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4547-4563. doi: 10.3934/dcds.2019187 |
[15] |
Leonardo Kosloff, Tomas Schonbek. Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1025-1043. doi: 10.3934/dcdss.2014.7.1025 |
[16] |
Yuri N. Fedorov, Luis C. García-Naranjo, Joris Vankerschaver. The motion of the 2D hydrodynamic Chaplygin sleigh in the presence of circulation. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4017-4040. doi: 10.3934/dcds.2013.33.4017 |
[17] |
Theodore Kolokolnikov, Juncheng Wei. Hexagonal spike clusters for some PDE's in 2D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4057-4070. doi: 10.3934/dcdsb.2020039 |
[18] |
Joshua Hudson, Michael Jolly. Numerical efficacy study of data assimilation for the 2D magnetohydrodynamic equations. Journal of Computational Dynamics, 2019, 6 (1) : 131-145. doi: 10.3934/jcd.2019006 |
[19] |
Makram Hamouda, Chang-Yeol Jung, Roger Temam. Boundary layers for the 2D linearized primitive equations. Communications on Pure and Applied Analysis, 2009, 8 (1) : 335-359. doi: 10.3934/cpaa.2009.8.335 |
[20] |
A. Rousseau, Roger Temam, J. Tribbia. Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1257-1276. doi: 10.3934/dcds.2005.13.1257 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]