$\overline{u u} $˜ $\overline{\bar {u} \bar {u}}$,
yielding the model
$\nabla \cdot w= 0, \quad w_{t} + \nabla \cdot
(\overline{w
w})
- \nu \Delta w + \nabla q = \bar {f}$.
In particular, we prove existence and uniqueness of strong solutions, develop the regularity of solutions of the model and give a rigorous bound on the modelling error, $||\bar {u} - w||$. Finally, we consider the question of non-physical vortices (false eddies), proving that the model correctly predicts that only a small amount of vorticity results when the total turning forces on the flow are small.
Citation: |