-
Previous Article
Diffusion-aggregation processes with mono-stable reaction terms
- DCDS-B Home
- This Issue
-
Next Article
Competitive-exclusion versus competitive-coexistence for systems in the plane
Parametric perturbations and non-feedback controlling chaotic motion
1. | Physics Faculty, Moscow State University, 119992 Moscow, Russian Federation |
Also we demonstrate that for a piecewise linear family of maps and for a two-dimensional map having a hyperbolic attractor there are feedback-free perturbations which lead to the suppression of chaos and stabilization of certain periodic orbits.
[1] |
Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275 |
[2] |
Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933 |
[3] |
Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210 |
[4] |
Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu. The snapback repellers for chaos in multi-dimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 81-92. doi: 10.3934/jcd.2018004 |
[5] |
Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573 |
[6] |
Olivier P. Le Maître, Lionel Mathelin, Omar M. Knio, M. Yousuff Hussaini. Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 199-226. doi: 10.3934/dcds.2010.28.199 |
[7] |
Juvencio Alberto Betancourt-Mar, José Manuel Nieto-Villar. Theoretical models for chronotherapy: Periodic perturbations in funnel chaos type. Mathematical Biosciences & Engineering, 2007, 4 (2) : 177-186. doi: 10.3934/mbe.2007.4.177 |
[8] |
Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399 |
[9] |
Flaviano Battelli, Ken Palmer. Transversal periodic-to-periodic homoclinic orbits in singularly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 367-387. doi: 10.3934/dcdsb.2010.14.367 |
[10] |
Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191 |
[11] |
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 |
[12] |
Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161 |
[13] |
Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383 |
[14] |
Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917 |
[15] |
Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861 |
[16] |
J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653 |
[17] |
Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic and Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85 |
[18] |
Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127 |
[19] |
Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003 |
[20] |
Piotr Oprocha. Specification properties and dense distributional chaos. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]