• Previous Article
    On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay
  • DCDS-B Home
  • This Issue
  • Next Article
    A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms
November  2006, 6(6): 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

The dynamics of a Prey-Predator model with impulsive state feedback control


Department of Computational Science and Mathematics, Guilin University of Electronic Technology, Guilin 54100, China


School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083

Received  May 2005 Revised  June 2006 Published  August 2006

The dynamics of a prey-predator model with impulsive state feedback control is studied by an autonomous system with impulses. The dynamical behavior of this system is discussed by means of both theoretical and numerical ways. The sufficient conditions of existence and stability of the semi-trivial periodic solution, positive period-one, and positive period-two solutions are obtained by using Lambert W function and the analogue of the Poincaré criterion. The bifurcation analysis shows that solutions appear via a cascade of period-doubling in some interval of parameters. The bifurcation diagrams, the Lyapunov exponents, and the phase portraits are given in two examples. The discussion of prey (pest) control strategy shows that the impulsive state feedback control is effective.
Citation: Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

Rafael Ortega. Variations on Lyapunov's stability criterion and periodic prey-predator systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2021069


Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045


J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059


Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002


Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244


Meng Zhao, Wan-Tong Li, Jia-Feng Cao. A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3295-3316. doi: 10.3934/dcdsb.2017138


Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737


Jian Zu, Wendi Wang, Bo Zu. Evolutionary dynamics of prey-predator systems with Holling type II functional response. Mathematical Biosciences & Engineering, 2007, 4 (2) : 221-237. doi: 10.3934/mbe.2007.4.221


Juan C. Jara, Felipe Rivero. Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4127-4137. doi: 10.3934/dcds.2014.34.4127


Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130


Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021038


R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423


Malay Banerjee, Nayana Mukherjee, Vitaly Volpert. Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2109-2120. doi: 10.3934/dcdss.2020180


Wenjie Li, Lihong Huang, Jinchen Ji. Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2639-2664. doi: 10.3934/dcdsb.2020026


Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173


Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536


H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705


Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061


Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129


Ke Wang, Qi Wang, Feng Yu. Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 505-543. doi: 10.3934/dcds.2017021

2020 Impact Factor: 1.327


  • PDF downloads (107)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]