November  2006, 6(6): 1357-1380. doi: 10.3934/dcdsb.2006.6.1357

Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems

1. 

Departament de Física Aplicada, Universitat Politècnica de Catalunya, Jordi Girona Salgado s/n. Campus Nord. Mòdul B4, 08034 Barcelona, Spain, Spain

2. 

E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Pl. Cardenal Cisneros 3, 28040 Madrid, Spain

Received  July 2005 Revised  June 2006 Published  August 2006

A two-dimensional thermal convection problem in a circular annulus subject to a constant inward radial gravity and heated from the inside is considered. A branch of spatio-temporal symmetric periodic orbits that are known only numerically shows a multi-critical codimension-two point with a triple +1-Floquet multiplier. The weakly nonlinear analysis of the dynamics near such point is performed by deriving a system of amplitude equations using a perturbation technique, which is an extension of the Lindstedt-Poincaré method, and solvability conditions. The results obtained using the amplitude equation are compared with those from the original system of partial differential equations showing a very good agreement.
Citation: Juan Sánchez, Marta Net, José M. Vega. Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1357-1380. doi: 10.3934/dcdsb.2006.6.1357
[1]

Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

[2]

Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229

[3]

Daniel Wilczak, Piotr Zgliczyński. Topological method for symmetric periodic orbits for maps with a reversing symmetry. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 629-652. doi: 10.3934/dcds.2007.17.629

[4]

Daniel Offin, Hildeberto Cabral. Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 379-392. doi: 10.3934/dcdss.2009.2.379

[5]

Regina Martínez. On the existence of doubly symmetric "Schubart-like" periodic orbits. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 943-975. doi: 10.3934/dcdsb.2012.17.943

[6]

Peter Dormayer, Anatoli F. Ivanov. Stability of symmetric periodic solutions with small amplitude of $\dot x(t)=\alpha f(x(t), x(t-1))$. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 61-82. doi: 10.3934/dcds.1999.5.61

[7]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[8]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[9]

Bryce Weaver. Growth rate of periodic orbits for geodesic flows over surfaces with radially symmetric focusing caps. Journal of Modern Dynamics, 2014, 8 (2) : 139-176. doi: 10.3934/jmd.2014.8.139

[10]

Motserrat Corbera, Jaume Llibre, Claudia Valls. Periodic orbits of perturbed non-axially symmetric potentials in 1:1:1 and 1:1:2 resonances. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2299-2337. doi: 10.3934/dcdsb.2018101

[11]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[12]

Joan Gimeno, Àngel Jorba. Using automatic differentiation to compute periodic orbits of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4853-4867. doi: 10.3934/dcdsb.2020130

[13]

Guy Métivier, Kevin Zumbrun. Large-amplitude modulation of periodic traveling waves. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022070

[14]

Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177

[15]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[16]

Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949

[17]

Jacky Cresson, Christophe Guillet. Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 451-470. doi: 10.3934/dcds.2003.9.451

[18]

Yonggeun Cho, Tohru Ozawa. On small amplitude solutions to the generalized Boussinesq equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 691-711. doi: 10.3934/dcds.2007.17.691

[19]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[20]

Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]