November  2006, 6(6): 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet


Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India


Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India


TIFR Centre, Indian Institute of Science, Bangalore 560 012, India

Received  August 2005 Revised  March 2006 Published  August 2006

The slow-manifold for the Lorenz-Krishnamurthy model has been studied. By minimizing the evolution rate we find that the analytical functions for the fast variables are devoid of high frequency oscillations. However upon solving this model with initial values of the fast variables obtained from the analytical functions, the LK model exhibits high frequency oscillations. Upon using the time derivatives of the analytic functions for computing the evolution of fast variables, we find a slow-manifold in the neighbourhood of the LK model.
    Minimization of evolution rate does not guarantee the invariance of the manifold. Using a locally linear approximate reduction scheme, the invariance can be maintained. However, the solutions so obtained do develop high frequency oscillations. The onset of these high frequency oscillations is delayed vis-a-vis other previous studies. These methods have potential to be used in improving the predictions of weather systems.
Citation: M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775


George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete & Continuous Dynamical Systems, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189


Ronny Bergmann, Raymond H. Chan, Ralf Hielscher, Johannes Persch, Gabriele Steidl. Restoration of manifold-valued images by half-quadratic minimization. Inverse Problems & Imaging, 2016, 10 (2) : 281-304. doi: 10.3934/ipi.2016001


Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304


Antonios Zagaris, Christophe Vandekerckhove, C. William Gear, Tasso J. Kaper, Ioannis G. Kevrekidis. Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2759-2803. doi: 10.3934/dcds.2012.32.2759


M. Montaz Ali. A recursive topographical differential evolution algorithm for potential energy minimization. Journal of Industrial & Management Optimization, 2010, 6 (1) : 29-46. doi: 10.3934/jimo.2010.6.29


J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002


Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166


Amina Amassad, Mircea Sofonea. Analysis of some nonlinear evolution systems arising in rate-type viscoplasticity. Conference Publications, 1998, 1998 (Special) : 58-71. doi: 10.3934/proc.1998.1998.58


Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076


Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems & Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295


Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077


Pei Wang, Ling Zhang, Zhongfei Li. Asset allocation for a DC pension plan with learning about stock return predictability. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021138


E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010


Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249


Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557


Justin Holmer, Maciej Zworski. Slow soliton interaction with delta impurities. Journal of Modern Dynamics, 2007, 1 (4) : 689-718. doi: 10.3934/jmd.2007.1.689


Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1481-1502. doi: 10.3934/dcds.2012.32.1481


Weinan E, Weiguo Gao. Orbital minimization with localization. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 249-264. doi: 10.3934/dcds.2009.23.249


Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009

2020 Impact Factor: 1.327


  • PDF downloads (77)
  • HTML views (0)
  • Cited by (1)

[Back to Top]