-
Previous Article
Cauchy problem for the nonlinear Schrödinger-IMBq equations
- DCDS-B Home
- This Issue
-
Next Article
Block structure and block stability of two-dimensional incompressible flows
A model for disease transmission in a patchy environment
1. | Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 3P4, Canada |
2. | Department of Mathematics and Statistics, University of Victoria, Victoria B.C., Canada V8W 3P4 |
[1] |
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170 |
[2] |
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 |
[3] |
Gabriela Marinoschi. Identification of transmission rates and reproduction number in a SARS-CoV-2 epidemic model. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022128 |
[4] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[5] |
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 |
[6] |
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 |
[7] |
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 |
[8] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6229-6252. doi: 10.3934/dcdsb.2021016 |
[9] |
Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations and Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015 |
[10] |
Zhiting Xu. Traveling waves in an SEIR epidemic model with the variable total population. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3723-3742. doi: 10.3934/dcdsb.2016118 |
[11] |
Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105 |
[12] |
Yanan Zhao, Daqing Jiang, Xuerong Mao, Alison Gray. The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1277-1295. doi: 10.3934/dcdsb.2015.20.1277 |
[13] |
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239 |
[14] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure and Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288 |
[15] |
Qun Liu, Daqing Jiang. Dynamics of a multigroup SIRS epidemic model with random perturbations and varying total population size. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1089-1110. doi: 10.3934/cpaa.2020050 |
[16] |
Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209 |
[17] |
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457 |
[18] |
Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 |
[19] |
Theodore E. Galanthay. Mathematical study of the effects of travel costs on optimal dispersal in a two-patch model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1625-1638. doi: 10.3934/dcdsb.2015.20.1625 |
[20] |
John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]