January  2006, 6(1): 203-214. doi: 10.3934/dcdsb.2006.6.203

Cauchy problem for the nonlinear Schrödinger-IMBq equations

1. 

Department of Mathematics, Zhengzhou University, Zhengzhou 450052, China, China

Received  November 2004 Revised  July 2005 Published  October 2005

In this paper, the existence and uniqueness of the global strong solution of the Cauchy problem for nonlinear Schrödinger-IMBq equations are proved.
Citation: Shubin Wang, Guowang Chen. Cauchy problem for the nonlinear Schrödinger-IMBq equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 203-214. doi: 10.3934/dcdsb.2006.6.203
[1]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[2]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[3]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[4]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[5]

Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131

[6]

Hongwei Wang, Amin Esfahani. On the Cauchy problem for a nonlocal nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022039

[7]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[8]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[9]

Masahoto Ohta, Grozdena Todorova. Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1313-1325. doi: 10.3934/dcds.2009.23.1313

[10]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5383-5405. doi: 10.3934/dcdsb.2020348

[12]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[13]

Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233

[14]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[15]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[16]

Carlos Kenig, Tobias Lamm, Daniel Pollack, Gigliola Staffilani, Tatiana Toro. The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 389-439. doi: 10.3934/dcds.2010.27.389

[17]

Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations and Control Theory, 2022, 11 (3) : 837-867. doi: 10.3934/eect.2021028

[18]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[19]

J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure and Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467

[20]

Tadahiro Oh. Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1563-1580. doi: 10.3934/cpaa.2015.14.1563

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]