
Previous Article
Stability for static walls in ferromagnetic nanowires
 DCDSB Home
 This Issue

Next Article
Analysis of a corner layer problem in anisotropic interfaces
Homogenized Maxwell's equations; A model for ceramic varistors
1.  University Of California, Santa Barbara, Ca 93106 
2.  Swedish Defence Research Agency, FOI, Microwave Technology, P.O. Box 1165, SE581 11, Linköping, Sweden 
[1] 
Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations & Control Theory, 2019, 8 (2) : 343357. doi: 10.3934/eect.2019018 
[2] 
S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590601. doi: 10.3934/proc.2007.2007.590 
[3] 
Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete & Continuous Dynamical Systems  B, 2020, 25 (10) : 38573887. doi: 10.3934/dcdsb.2020228 
[4] 
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431444. doi: 10.3934/cpaa.2005.4.431 
[5] 
Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 4991. doi: 10.3934/ipi.2010.4.49 
[6] 
Barbara Kaltenbacher, William Rundell. On the simultaneous recovery of the conductivity and the nonlinear reaction term in a parabolic equation. Inverse Problems & Imaging, 2020, 14 (5) : 939966. doi: 10.3934/ipi.2020043 
[7] 
JiannSheng Jiang, ChiKun Lin, ChiHua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems  B, 2008, 10 (1) : 91107. doi: 10.3934/dcdsb.2008.10.91 
[8] 
Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and nonlinear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91123. doi: 10.3934/ipi.2018004 
[9] 
Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 50835105. doi: 10.3934/dcds.2015.35.5083 
[10] 
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems  B, 2021, 26 (5) : 24292440. doi: 10.3934/dcdsb.2020185 
[11] 
Felipe PonceVanegas. Reconstruction of the derivative of the conductivity at the boundary. Inverse Problems & Imaging, 2020, 14 (4) : 701718. doi: 10.3934/ipi.2020032 
[12] 
Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295309. doi: 10.3934/cpaa.2005.4.295 
[13] 
Zilai Li, Zhenhua Guo. On free boundary problem for compressible navierstokes equations with temperaturedependent heat conductivity. Discrete & Continuous Dynamical Systems  B, 2017, 22 (10) : 39033919. doi: 10.3934/dcdsb.2017201 
[14] 
Jishan Fan, Fucai Li, Gen Nakamura. A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 17571766. doi: 10.3934/dcdsb.2018079 
[15] 
Xiangdi Huang, Zhouping Xin. On formation of singularity for nonisentropic NavierStokes equations without heatconductivity. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 44774493. doi: 10.3934/dcds.2016.36.4477 
[16] 
D. Sanchez. Boundary layer on a highconductivity domain. Communications on Pure & Applied Analysis, 2002, 1 (4) : 547564. doi: 10.3934/cpaa.2002.1.547 
[17] 
Paolo Luzzini, Paolo Musolino. Perturbation analysis of the effective conductivity of a periodic composite. Networks & Heterogeneous Media, 2020, 15 (4) : 581603. doi: 10.3934/nhm.2020015 
[18] 
M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219236. doi: 10.3934/ipi.2011.5.219 
[19] 
Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217242. doi: 10.3934/ipi.2013.7.217 
[20] 
Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems & Imaging, 2007, 1 (1) : 95105. doi: 10.3934/ipi.2007.1.95 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]