• Previous Article
    Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations
  • DCDS-B Home
  • This Issue
  • Next Article
    Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow
July  2006, 6(4): 667-696. doi: 10.3934/dcdsb.2006.6.667

Pathwise non-exponential decay rates of solutions of scalar nonlinear stochastic differential equations

1. 

School of Mathematical Sciences, Dublin City University, Dublin, Ireland

2. 

Department of Mathematics and Computer Science, The University of the West Indies, Mona, Kingston 7

3. 

Southern Illinois University, Department of Mathematics, MC 4408, 1245 Lincoln Drive, Carbondale, IL 62901-7316

Received  January 2005 Revised  September 2005 Published  April 2006

This paper studies the pathwise asymptotic stability of the zero solution of scalar stochastic differential equation of Itô type. Specifically, we provide conditions for solutions to converge to zero at given non-exponential rates. The results completely classify the rates of decay of many parameterised families of stochastic differential equations.
Citation: John A. D. Appleby, Alexandra Rodkina, Henri Schurz. Pathwise non-exponential decay rates of solutions of scalar nonlinear stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 667-696. doi: 10.3934/dcdsb.2006.6.667
[1]

Marc Chamberland, Anna Cima, Armengol Gasull, Francesc Mañosas. Characterizing asymptotic stability with Dulac functions. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 59-76. doi: 10.3934/dcds.2007.17.59

[2]

Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021057

[3]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[4]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[5]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure and Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

[6]

Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control and Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010

[7]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[8]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[9]

Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[11]

José Manuel Palacios. Orbital and asymptotic stability of a train of peakons for the Novikov equation. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2475-2518. doi: 10.3934/dcds.2020372

[12]

Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007

[13]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control and Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[14]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[15]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[16]

Denis Matignon, Christophe Prieur. Asymptotic stability of Webster-Lokshin equation. Mathematical Control and Related Fields, 2014, 4 (4) : 481-500. doi: 10.3934/mcrf.2014.4.481

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[18]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[19]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032

[20]

Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic and Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (4)

[Back to Top]