Advanced Search
Article Contents
Article Contents

Brownian flow on a finite interval with jump boundary conditions

Abstract Related Papers Cited by
  • We consider a stochastic flow in an interval $[-a,b]$, where $a,b>0$. Each point of the interval is driven by the same Brownian path and jumps to zero when it reaches the boundary of the interval. Assuming that $a/b$ is irrational we study the long term behavior of a random measure $\mu_t$, the image of a finite Borel measure $\mu_0$ under the flow. We show that if $\mu_0$ is absolutely continuous with respect to the Lebesgue measure then the time averages of the variance of $\mu_t$ converge to zero almost surely. We also prove that for an arbitrary finite Borel measure $\mu_0$ the Lebesgue measure of the support of $\mu_t$ decreases to zero as $t\to\infty$ with probability one.
    Mathematics Subject Classification: Primary: 60J65, 60F15; Secondary: 60J10.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint