-
Previous Article
Local stability implies global stability in some one-dimensional discrete single-species models
- DCDS-B Home
- This Issue
-
Next Article
Uniform a priori estimates for elliptic and static Maxwell interface problems
Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign
1. | Department of Applied Mathematics, Harbin Engineering University, Harbin 150001, China, China |
[1] |
Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083 |
[2] |
Filipa Caetano, Martin J. Gander, Laurence Halpern, Jérémie Szeftel. Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations. Networks and Heterogeneous Media, 2010, 5 (3) : 487-505. doi: 10.3934/nhm.2010.5.487 |
[3] |
Aníbal Rodríguez-Bernal, Alejandro Vidal-López. A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (2) : 635-644. doi: 10.3934/cpaa.2014.13.635 |
[4] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 |
[5] |
Mengyun Liu, Chengbo Wang. Global existence for semilinear damped wave equations in relation with the Strauss conjecture. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 709-724. doi: 10.3934/dcds.2020058 |
[6] |
Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651 |
[7] |
Jorge A. Esquivel-Avila. Nonexistence of global solutions for a class of viscoelastic wave equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4213-4230. doi: 10.3934/dcdss.2021134 |
[8] |
José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 483-497. doi: 10.3934/dcds.2007.18.483 |
[9] |
Yang Liu, Wenke Li. A family of potential wells for a wave equation. Electronic Research Archive, 2020, 28 (2) : 807-820. doi: 10.3934/era.2020041 |
[10] |
Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43 |
[11] |
Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281 |
[12] |
Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2021, 10 (4) : 701-722. doi: 10.3934/eect.2020087 |
[13] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control and Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005 |
[14] |
Hugo Leiva, Nelson Merentes, José L. Sánchez. Approximate controllability of semilinear reaction diffusion equations. Mathematical Control and Related Fields, 2012, 2 (2) : 171-182. doi: 10.3934/mcrf.2012.2.171 |
[15] |
Georg Hetzer. Global existence for a functional reaction-diffusion problem from climate modeling. Conference Publications, 2011, 2011 (Special) : 660-671. doi: 10.3934/proc.2011.2011.660 |
[16] |
Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681 |
[17] |
Maurizio Garrione, Marta Strani. Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 91-103. doi: 10.3934/dcdss.2019006 |
[18] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[19] |
Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707 |
[20] |
Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]