# American Institute of Mathematical Sciences

March  2007, 7(2): 285-291. doi: 10.3934/dcdsb.2007.7.285

## Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order

 1 Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78541 2 Department of Mathematical Science, Tianjin University of Technology and Education, Tianjin 300222, China

Received  September 2006 Revised  November 2006 Published  December 2006

In this paper, we study a two-dimensional Burgers--Korteweg-de Vries-type equation with higher-order nonlinearities. A class of solitary wave solution is obtained by means of the Divisor Theorem which is based on the ring theory of commutative algebra. Our result indicates that the presentation of traveling wave solution in [J. Phys. A (Math. Gen.) 35 (2002) 8253--8265] is incorrect; an explanation as to why this is so is given.
Citation: Zhaosheng Feng, Qingguo Meng. Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 285-291. doi: 10.3934/dcdsb.2007.7.285
 [1] William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control and Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028 [2] Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067 [3] D. P. Demuner, M. Federson, C. Gutierrez. The Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 495-509. doi: 10.3934/dcds.2009.25.495 [4] Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391 [5] Huijiang Zhao, Qingsong Zhao. Radially symmetric stationary wave for two-dimensional Burgers equation. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2167-2185. doi: 10.3934/dcds.2020357 [6] Sergei Kuksin, Galina Perelman. Vey theorem in infinite dimensions and its application to KdV. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 1-24. doi: 10.3934/dcds.2010.27.1 [7] Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022048 [8] José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051 [9] Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036 [10] Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483 [11] Weiguo Zhang, Yujiao Sun, Zhengming Li, Shengbing Pei, Xiang Li. Bounded traveling wave solutions for MKdV-Burgers equation with the negative dispersive coefficient. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2883-2903. doi: 10.3934/dcdsb.2016078 [12] Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77 [13] Xiaowan Li, Zengji Du, Shuguan Ji. Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2961-2981. doi: 10.3934/cpaa.2019132 [14] Tadas Telksnys, Zenonas Navickas, Miguel A. F. Sanjuán, Romas Marcinkevicius, Minvydas Ragulskis. Kink solitary solutions to a hepatitis C evolution model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4427-4447. doi: 10.3934/dcdsb.2020106 [15] Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623 [16] Ronald Mickens, Kale Oyedeji. Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's. Evolution Equations and Control Theory, 2019, 8 (1) : 139-147. doi: 10.3934/eect.2019008 [17] Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153 [18] Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549 [19] Zengji Du, Xiaojie Lin, Yulin Ren. Dynamics of solitary waves and periodic waves for a generalized KP-MEW-Burgers equation with damping. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1987-2003. doi: 10.3934/cpaa.2021118 [20] Shengfu Deng. Generalized multi-hump wave solutions of Kdv-Kdv system of Boussinesq equations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3671-3716. doi: 10.3934/dcds.2019150

2020 Impact Factor: 1.327