-
Previous Article
Numerical methods for stiff reaction-diffusion systems
- DCDS-B Home
- This Issue
-
Next Article
Comparison of quarter-plane and two-point boundary value problems: The KdV-equation
Analytical solutions for phase transitions in a slender elastic cylinder under non-deforming and other boundary conditions
1. | Department of Mechanics, Tianjin University, Tianjin, 300072, China |
2. | Department of Mathematics and Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China |
[1] |
G. Machado, L. Trabucho. Analytical and numerical solutions for a class of optimization problems in elasticity. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1013-1032. doi: 10.3934/dcdsb.2004.4.1013 |
[2] |
Emil Minchev. Existence and uniqueness of solutions of a system of nonlinear PDE for phase transitions with vector order parameter. Conference Publications, 2005, 2005 (Special) : 652-661. doi: 10.3934/proc.2005.2005.652 |
[3] |
Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237 |
[4] |
Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) Existence and uniform boundedness. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 825-837. doi: 10.3934/dcdsb.2007.7.825 |
[5] |
Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (II) Convergence. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 839-857. doi: 10.3934/dcdsb.2007.7.839 |
[6] |
Honghu Liu. Phase transitions of a phase field model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883 |
[7] |
Shu-Yi Zhang. Existence of multidimensional non-isothermal phase transitions in a steady van der Waals flow. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2221-2239. doi: 10.3934/dcds.2013.33.2221 |
[8] |
Giovanna Bonfanti, Fabio Luterotti. A well-posedness result for irreversible phase transitions with a nonlinear heat flux law. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 331-351. doi: 10.3934/dcdss.2013.6.331 |
[9] |
Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure and Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545 |
[10] |
Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139 |
[11] |
Jie Jiang, Boling Guo. Asymptotic behavior of solutions to a one-dimensional full model for phase transitions with microscopic movements. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 167-190. doi: 10.3934/dcds.2012.32.167 |
[12] |
Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013 |
[13] |
Ruifeng Zhang, Nan Liu, Man An. Analytical solutions of Skyrme model. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2201-2211. doi: 10.3934/dcdss.2016092 |
[14] |
Steffen Arnrich. Modelling phase transitions via Young measures. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29 |
[15] |
Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287 |
[16] |
Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163 |
[17] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565 |
[18] |
Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965 |
[19] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[20] |
Jun Bao, Lihe Wang, Chunqin Zhou. Positive solutions to elliptic equations in unbounded cylinder. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1389-1400. doi: 10.3934/dcdsb.2016001 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]