-
Previous Article
Brain anatomical feature detection by solving partial differential equations on general manifolds
- DCDS-B Home
- This Issue
-
Next Article
On shock waves in solids
Nonlinear three-dimensional simulation of solid tumor growth
1. | Department of Mathematics, University of California, Irvine, CA 92697, United States |
2. | School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, United States |
3. | Center for Mathematical and Computational Biology, Department of Mathematics, University of California, Irvine, CA 92697-3875 |
4. | Department of Mathematics, Center for Mathematical and Computational Biology, University of California, Irvine, CA 92697, United States |
[1] |
Thomas Y. Hou, Pingwen Zhang. Convergence of a boundary integral method for 3-D water waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 1-34. doi: 10.3934/dcdsb.2002.2.1 |
[2] |
Guoliang Ju, Can Chen, Rongliang Chen, Jingzhi Li, Kaitai Li, Shaohui Zhang. Numerical simulation for 3D flow in flow channel of aeroengine turbine fan based on dimension splitting method. Electronic Research Archive, 2020, 28 (2) : 837-851. doi: 10.3934/era.2020043 |
[3] |
Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems and Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947 |
[4] |
Thomas Y. Hou, Zuoqiang Shi. Dynamic growth estimates of maximum vorticity for 3D incompressible Euler equations and the SQG model. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1449-1463. doi: 10.3934/dcds.2012.32.1449 |
[5] |
Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences & Engineering, 2008, 5 (2) : 355-388. doi: 10.3934/mbe.2008.5.355 |
[6] |
Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems and Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021 |
[7] |
Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193 |
[8] |
A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289 |
[9] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069 |
[10] |
Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure and Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001 |
[11] |
Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations and Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025 |
[12] |
Alessio Falocchi, Filippo Gazzola. Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1185-1200. doi: 10.3934/dcds.2021151 |
[13] |
Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems and Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991 |
[14] |
Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407 |
[15] |
Xiaoyu Chen, Jijie Zhao, Qian Zhang. Global existence of weak solutions for the 3D axisymmetric chemotaxis-Navier-Stokes equations with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022062 |
[16] |
Niklas Hartung. Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 445-467. doi: 10.3934/dcdsb.2015.20.445 |
[17] |
Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293 |
[18] |
Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105 |
[19] |
Yong Zhou. Remarks on regularities for the 3D MHD equations. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 881-886. doi: 10.3934/dcds.2005.12.881 |
[20] |
Hyeong-Ohk Bae, Bum Ja Jin. Estimates of the wake for the 3D Oseen equations. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 1-18. doi: 10.3934/dcdsb.2008.10.1 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]