-
Previous Article
Global asymptotics of Hermite polynomials via Riemann-Hilbert approach
- DCDS-B Home
- This Issue
-
Next Article
The hypercircle theorem for elastic shells and the accuracy of Novozhilov's simplified equations for general cylindrical shells
Simple climate modeling
1. | University of Washington, Department of Applied Mathematics, Box 352420, Seattle, WA 98195-2420 |
[1] |
Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143-164. doi: 10.3934/mbe.2017010 |
[2] |
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89 |
[3] |
Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565 |
[4] |
Victor Fabian Morales-Delgado, José Francisco Gómez-Aguilar, Marco Antonio Taneco-Hernández. Mathematical modeling approach to the fractional Bergman's model. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 805-821. doi: 10.3934/dcdss.2020046 |
[5] |
Karly Jacobsen, Jillian Stupiansky, Sergei S. Pilyugin. Mathematical modeling of citrus groves infected by huanglongbing. Mathematical Biosciences & Engineering, 2013, 10 (3) : 705-728. doi: 10.3934/mbe.2013.10.705 |
[6] |
Bashar Ibrahim. Mathematical analysis and modeling of DNA segregation mechanisms. Mathematical Biosciences & Engineering, 2018, 15 (2) : 429-440. doi: 10.3934/mbe.2018019 |
[7] |
Natalia L. Komarova. Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences & Engineering, 2011, 8 (2) : 289-306. doi: 10.3934/mbe.2011.8.289 |
[8] |
Jeong-Mi Yoon, Volodymyr Hrynkiv, Lisa Morano, Anh Tuan Nguyen, Sara Wilder, Forrest Mitchell. Mathematical modeling of Glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (3) : 667-677. doi: 10.3934/mbe.2014.11.667 |
[9] |
Evans K. Afenya. Using Mathematical Modeling as a Resource in Clinical Trials. Mathematical Biosciences & Engineering, 2005, 2 (3) : 421-436. doi: 10.3934/mbe.2005.2.421 |
[10] |
Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences & Engineering, 2011, 8 (2) : 425-443. doi: 10.3934/mbe.2011.8.425 |
[11] |
Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55 |
[12] |
Alacia M. Voth, John G. Alford, Edward W. Swim. Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer. Mathematical Biosciences & Engineering, 2017, 14 (3) : 777-804. doi: 10.3934/mbe.2017043 |
[13] |
Alexander V. Budyansky, Kurt Frischmuth, Vyacheslav G. Tsybulin. Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 547-561. doi: 10.3934/dcdsb.2018196 |
[14] |
Elpiniki Nikolopoulou, Steffen E. Eikenberry, Jana L. Gevertz, Yang Kuang. Mathematical modeling of an immune checkpoint inhibitor and its synergy with an immunostimulant. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2133-2159. doi: 10.3934/dcdsb.2020138 |
[15] |
Loïc Louison, Abdennebi Omrane, Harry Ozier-Lafontaine, Delphine Picart. Modeling plant nutrient uptake: Mathematical analysis and optimal control. Evolution Equations and Control Theory, 2015, 4 (2) : 193-203. doi: 10.3934/eect.2015.4.193 |
[16] |
Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 915-943. doi: 10.3934/dcdsb.2013.18.915 |
[17] |
Alessia Berti, Claudio Giorgi, Angelo Morro. Mathematical modeling of phase transition and separation in fluids: A unified approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1889-1909. doi: 10.3934/dcdsb.2014.19.1889 |
[18] |
John A. Adam. Inside mathematical modeling: building models in the context of wound healing in bone. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 1-24. doi: 10.3934/dcdsb.2004.4.1 |
[19] |
Donna J. Cedio-Fengya, John G. Stevens. Mathematical modeling of biowall reactors for in-situ groundwater treatment. Mathematical Biosciences & Engineering, 2006, 3 (4) : 615-634. doi: 10.3934/mbe.2006.3.615 |
[20] |
Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]