\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem

Abstract Related Papers Cited by
  • We study the asymptotic behavior of the eigenvalues $\beta^\varepsilon$ and the associated eigenfunctions of an $\varepsilon$-dependent Steklov type eigenvalue problem posed in a bounded domain $\Omega$ of $\R^2$, when $\varepsilon \to 0$. The eigenfunctions $u^\varepsilon$ being harmonic functions inside $\Omega$, the Steklov condition is imposed on segments $T^\varepsilon$ of length $O(\varepsilon)$ periodically distributed on a fixed part $\Sigma$ of the boundary $\partial \Omega$; a homogeneous Dirichlet condition is imposed outside. The homogenization of this problem as $\varepsilon \to 0$ involves the study of the spectral local problem posed in the unit reference domain, namely the half-band $G=(-P/2,P/2)\times (0,+\infty)$ with $P$ a fixed number, with periodic conditions on the lateral boundaries and mixed boundary conditions of Dirichlet and Steklov type respectively on the segment lying on $\{y_2=0\}$. We characterize the asymptotic behavior of the low frequencies of the homogenization problem, namely of $\beta^\varepsilon\varepsilon$, and the associated eigenfunctions by means of those of the local problem.
    Mathematics Subject Classification: Primary: 35B27, 35P05, 47F05, 35P15; Secondary: 86A15, 47A55, 47B38.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return