-
Previous Article
Growth regimes in phase ordering transformations
- DCDS-B Home
- This Issue
-
Next Article
A pseudospectral observer for nonlinear systems
Effects of buoyancy on the lower branch modes on a Blasius boundary layer
1. | Mathematics Department, University of Pretoria, Pretoria 0002, South Africa |
[1] |
Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial and Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499 |
[2] |
Lili Du, Mingshu Fan. Thermal runaway for a nonlinear diffusion model in thermal electricity. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2349-2368. doi: 10.3934/dcds.2013.33.2349 |
[3] |
Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial and Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647 |
[4] |
Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091 |
[5] |
Michele Gianfelice, Marco Isopi. On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model. Networks and Heterogeneous Media, 2011, 6 (1) : 127-144. doi: 10.3934/nhm.2011.6.127 |
[6] |
Steve Rosencrans, Xuefeng Wang, Shan Zhao. Estimating eigenvalues of an anisotropic thermal tensor from transient thermal probe measurements. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5441-5455. doi: 10.3934/dcds.2013.33.5441 |
[7] |
Andrei Halanay, Luciano Pandolfi. Lack of controllability of thermal systems with memory. Evolution Equations and Control Theory, 2014, 3 (3) : 485-497. doi: 10.3934/eect.2014.3.485 |
[8] |
Renata Bunoiu, Claudia Timofte. Homogenization of a thermal problem with flux jump. Networks and Heterogeneous Media, 2016, 11 (4) : 545-562. doi: 10.3934/nhm.2016009 |
[9] |
J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485 |
[10] |
Emilian Bulgariu, Ionel-Dumitrel Ghiba. On the thermal stresses in anisotropic porous cylinders. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1539-1550. doi: 10.3934/dcdss.2013.6.1539 |
[11] |
Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 |
[12] |
Ariel Salort. Lower bounds for Orlicz eigenvalues. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1415-1434. doi: 10.3934/dcds.2021158 |
[13] |
Shixin Xu, Xingye Yue. Homogenization of thermal-hydro-mass transfer processes. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 55-76. doi: 10.3934/dcdss.2015.8.55 |
[14] |
Stefanie Thiem, Jörg Lässig. Modeling the thermal conductance of phononic crystal plates. Conference Publications, 2013, 2013 (special) : 737-746. doi: 10.3934/proc.2013.2013.737 |
[15] |
María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure and Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313 |
[16] |
Anna Ochal, Michal Jureczka. Numerical treatment of contact problems with thermal effect. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 387-400. doi: 10.3934/dcdsb.2018027 |
[17] |
Ephraim Agyingi, Tamas Wiandt, Sophia A. Maggelakis. Thermal detection of a prevascular tumor embedded in breast tissue. Mathematical Biosciences & Engineering, 2015, 12 (5) : 907-915. doi: 10.3934/mbe.2015.12.907 |
[18] |
María Teresa González Montesinos, Francisco Ortegón Gallego. The thermistor problem with degenerate thermal conductivity and metallic conduction. Conference Publications, 2007, 2007 (Special) : 446-455. doi: 10.3934/proc.2007.2007.446 |
[19] |
Marina Dolfin, Mirosław Lachowicz. Modeling DNA thermal denaturation at the mesoscopic level. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2469-2482. doi: 10.3934/dcdsb.2014.19.2469 |
[20] |
Rafael Sanabria. Inelastic Boltzmann equation driven by a particle thermal bath. Kinetic and Related Models, 2021, 14 (4) : 639-679. doi: 10.3934/krm.2021018 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]