October  2007, 8(3): 613-622. doi: 10.3934/dcdsb.2007.8.613

Effects of buoyancy on the lower branch modes on a Blasius boundary layer

1. 

Mathematics Department, University of Pretoria, Pretoria 0002, South Africa

Received  August 2006 Revised  January 2007 Published  July 2007

The effect of thermal buoyancy on the stability properties of lower branch Tollmein–Schlichting waves are investigated. At moderate values of thermal buoyancy the standard triple deck structure, which describes the evolution of such short wavelength instabilities in a buoyant boundary layer, is unaltered. The leading order eigenrelation is now a function of thermal buoyancy and from it we can derive the new dominant length-and time–scales for the instability in the case when the boundary layer is strongly buoyant. These new scales demonstrate that, in the case of strong wall cooling the lower branch structure is identical to the upper branch structure, thus suggesting that the curve of neutral stability may become closed at some large value of a Reynolds number. In the alternate limit of strong wall heating the evolution of a fixed frequency disturbance is governed by the linearized interactive boundary-layer equations; in this case wave–like disturbances cannot be described by any form of the quasi–parallel approximation theory.
Citation: Eunice Mureithi. Effects of buoyancy on the lower branch modes on a Blasius boundary layer. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 613-622. doi: 10.3934/dcdsb.2007.8.613
[1]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial and Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

[2]

Lili Du, Mingshu Fan. Thermal runaway for a nonlinear diffusion model in thermal electricity. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2349-2368. doi: 10.3934/dcds.2013.33.2349

[3]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial and Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[4]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

[5]

Michele Gianfelice, Marco Isopi. On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model. Networks and Heterogeneous Media, 2011, 6 (1) : 127-144. doi: 10.3934/nhm.2011.6.127

[6]

Steve Rosencrans, Xuefeng Wang, Shan Zhao. Estimating eigenvalues of an anisotropic thermal tensor from transient thermal probe measurements. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5441-5455. doi: 10.3934/dcds.2013.33.5441

[7]

Andrei Halanay, Luciano Pandolfi. Lack of controllability of thermal systems with memory. Evolution Equations and Control Theory, 2014, 3 (3) : 485-497. doi: 10.3934/eect.2014.3.485

[8]

Renata Bunoiu, Claudia Timofte. Homogenization of a thermal problem with flux jump. Networks and Heterogeneous Media, 2016, 11 (4) : 545-562. doi: 10.3934/nhm.2016009

[9]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[10]

Emilian Bulgariu, Ionel-Dumitrel Ghiba. On the thermal stresses in anisotropic porous cylinders. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1539-1550. doi: 10.3934/dcdss.2013.6.1539

[11]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[12]

Ariel Salort. Lower bounds for Orlicz eigenvalues. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1415-1434. doi: 10.3934/dcds.2021158

[13]

Shixin Xu, Xingye Yue. Homogenization of thermal-hydro-mass transfer processes. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 55-76. doi: 10.3934/dcdss.2015.8.55

[14]

Stefanie Thiem, Jörg Lässig. Modeling the thermal conductance of phononic crystal plates. Conference Publications, 2013, 2013 (special) : 737-746. doi: 10.3934/proc.2013.2013.737

[15]

María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure and Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313

[16]

Anna Ochal, Michal Jureczka. Numerical treatment of contact problems with thermal effect. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 387-400. doi: 10.3934/dcdsb.2018027

[17]

Ephraim Agyingi, Tamas Wiandt, Sophia A. Maggelakis. Thermal detection of a prevascular tumor embedded in breast tissue. Mathematical Biosciences & Engineering, 2015, 12 (5) : 907-915. doi: 10.3934/mbe.2015.12.907

[18]

María Teresa González Montesinos, Francisco Ortegón Gallego. The thermistor problem with degenerate thermal conductivity and metallic conduction. Conference Publications, 2007, 2007 (Special) : 446-455. doi: 10.3934/proc.2007.2007.446

[19]

Marina Dolfin, Mirosław Lachowicz. Modeling DNA thermal denaturation at the mesoscopic level. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2469-2482. doi: 10.3934/dcdsb.2014.19.2469

[20]

Rafael Sanabria. Inelastic Boltzmann equation driven by a particle thermal bath. Kinetic and Related Models, 2021, 14 (4) : 639-679. doi: 10.3934/krm.2021018

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]