November  2007, 8(4): 735-772. doi: 10.3934/dcdsb.2007.8.735

A hierarchy of diffusion models for partially ionized plasmas

1. 

Department of Technology, Mathematics, and Computer Science, University West, Gärdhemsvägen 4, 461 39 Trollhättan, Sweden

2. 

Mathématiques pour l'Industrie et la Physique, CNRS UMR 5640, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 4

3. 

Laboratoire Jacques-Louis Lions, CNRS UMR 7598, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France

Received  October 2006 Revised  July 2007 Published  August 2007

Partially ionized plasmas corresponding to different ionization degrees are derived and connected one with each other by the diffusion approximation methodology. These plasmas are the following electrical discharges: a thermal arc discharge, glow discharges in local thermodynamic equilibrium -LTE- and in non-LTE, and a non-LTE glow discharge interacting with an electron beam (or flow).
Citation: Isabelle Choquet, Pierre Degond, Brigitte Lucquin-Desreux. A hierarchy of diffusion models for partially ionized plasmas. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 735-772. doi: 10.3934/dcdsb.2007.8.735
[1]

Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic and Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873

[2]

Isabelle Choquet, Brigitte Lucquin-Desreux. Non equilibrium ionization in magnetized two-temperature thermal plasma. Kinetic and Related Models, 2011, 4 (3) : 669-700. doi: 10.3934/krm.2011.4.669

[3]

Walter A. Strauss, Masahiro Suzuki. Large amplitude stationary solutions of the Morrow model of gas ionization. Kinetic and Related Models, 2019, 12 (6) : 1297-1312. doi: 10.3934/krm.2019050

[4]

Bertrand Lods, Clément Mouhot, Giuseppe Toscani. Relaxation rate, diffusion approximation and Fick's law for inelastic scattering Boltzmann models. Kinetic and Related Models, 2008, 1 (2) : 223-248. doi: 10.3934/krm.2008.1.223

[5]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic and Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[6]

B. Anwasia, M. Bisi, F. Salvarani, A. J. Soares. On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting. Kinetic and Related Models, 2020, 13 (1) : 63-95. doi: 10.3934/krm.2020003

[7]

Christian Klingenberg, Marlies Pirner, Gabriella Puppo. A consistent kinetic model for a two-component mixture with an application to plasma. Kinetic and Related Models, 2017, 10 (2) : 445-465. doi: 10.3934/krm.2017017

[8]

Weixia Zhao. The expansion of gas from a wedge with small angle into a vacuum. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2319-2330. doi: 10.3934/cpaa.2013.12.2319

[9]

Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733

[10]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[11]

Fei Meng, Fang Liu. On the inelastic Boltzmann equation for soft potentials with diffusion. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5197-5217. doi: 10.3934/cpaa.2020233

[12]

Jiang Xu, Ting Zhang. Zero-electron-mass limit of Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4743-4768. doi: 10.3934/dcds.2013.33.4743

[13]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[14]

Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239

[15]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463

[16]

Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125

[17]

Fabian Rüffler, Volker Mehrmann, Falk M. Hante. Optimal model switching for gas flow in pipe networks. Networks and Heterogeneous Media, 2018, 13 (4) : 641-661. doi: 10.3934/nhm.2018029

[18]

Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307

[19]

Nicola Zamponi. Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization. Kinetic and Related Models, 2012, 5 (1) : 203-221. doi: 10.3934/krm.2012.5.203

[20]

Nuno J. Alves, Athanasios E. Tzavaras. The relaxation limit of bipolar fluid models. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 211-237. doi: 10.3934/dcds.2021113

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (11)

[Back to Top]